Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste Repository
Biologically enhanced transport of radionuclides is one of several processes that can affect the performance of a nuclear waste repository. In this work, several microbial isolates from the Waste Isolation Pilot Plant (WIPP) were tested for their influence on the concentration of neodymium, as an an...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-05-01
|
Series: | Microorganisms |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-2607/11/6/1370 |
_version_ | 1797593457396547584 |
---|---|
author | Julie Swanson Adrianne Navarrette Jandi Knox Hannah Kim Floyd Stanley |
author_facet | Julie Swanson Adrianne Navarrette Jandi Knox Hannah Kim Floyd Stanley |
author_sort | Julie Swanson |
collection | DOAJ |
description | Biologically enhanced transport of radionuclides is one of several processes that can affect the performance of a nuclear waste repository. In this work, several microbial isolates from the Waste Isolation Pilot Plant (WIPP) were tested for their influence on the concentration of neodymium, as an analog for +3 actinides, in simple sodium chloride solutions and in anoxic WIPP brines. Batch sorption experiments were carried out over a period of 4–5 weeks. In many cases, the effect on neodymium in solution was immediate and extensive and assumed to be due to surface complexation. However, over time, the continued loss of Nd from the solution was more likely due to biologically induced precipitation and/or mineralization and possible entrapment in extracellular polymeric substances. The results showed no correlation between organism type and the extent of its influence on neodymium in solution. However, a correlation was observed between different test matrices (simple NaCl versus high-magnesium brine versus high-NaCl brine). Further experiments were conducted to test these matrix effects, and the results showed a significant effect of magnesium concentration on the ability of microorganisms to remove Nd from solution. Possible mechanisms include cation competition and the alteration of cell surface structures. This suggests that the aqueous chemistry of the WIPP environs could play a larger role in the final disposition of +3 actinides than the microbiology. |
first_indexed | 2024-03-11T02:08:23Z |
format | Article |
id | doaj.art-87789378f0944d9eb098a647326280ad |
institution | Directory Open Access Journal |
issn | 2076-2607 |
language | English |
last_indexed | 2024-03-11T02:08:23Z |
publishDate | 2023-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Microorganisms |
spelling | doaj.art-87789378f0944d9eb098a647326280ad2023-11-18T11:40:58ZengMDPI AGMicroorganisms2076-26072023-05-01116137010.3390/microorganisms11061370Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste RepositoryJulie Swanson0Adrianne Navarrette1Jandi Knox2Hannah Kim3Floyd Stanley4Los Alamos National Laboratory, Carlsbad, NM 88220, USALos Alamos National Laboratory, Carlsbad, NM 88220, USALos Alamos National Laboratory, Carlsbad, NM 88220, USALos Alamos National Laboratory, Carlsbad, NM 88220, USALos Alamos National Laboratory, Carlsbad, NM 88220, USABiologically enhanced transport of radionuclides is one of several processes that can affect the performance of a nuclear waste repository. In this work, several microbial isolates from the Waste Isolation Pilot Plant (WIPP) were tested for their influence on the concentration of neodymium, as an analog for +3 actinides, in simple sodium chloride solutions and in anoxic WIPP brines. Batch sorption experiments were carried out over a period of 4–5 weeks. In many cases, the effect on neodymium in solution was immediate and extensive and assumed to be due to surface complexation. However, over time, the continued loss of Nd from the solution was more likely due to biologically induced precipitation and/or mineralization and possible entrapment in extracellular polymeric substances. The results showed no correlation between organism type and the extent of its influence on neodymium in solution. However, a correlation was observed between different test matrices (simple NaCl versus high-magnesium brine versus high-NaCl brine). Further experiments were conducted to test these matrix effects, and the results showed a significant effect of magnesium concentration on the ability of microorganisms to remove Nd from solution. Possible mechanisms include cation competition and the alteration of cell surface structures. This suggests that the aqueous chemistry of the WIPP environs could play a larger role in the final disposition of +3 actinides than the microbiology.https://www.mdpi.com/2076-2607/11/6/1370nuclear waste repositorybioassociationneodymiumbrinesalthalophile |
spellingShingle | Julie Swanson Adrianne Navarrette Jandi Knox Hannah Kim Floyd Stanley Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste Repository Microorganisms nuclear waste repository bioassociation neodymium brine salt halophile |
title | Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste Repository |
title_full | Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste Repository |
title_fullStr | Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste Repository |
title_full_unstemmed | Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste Repository |
title_short | Microbial Influence on the Mobility of +3 Actinides from a Salt-Based Nuclear Waste Repository |
title_sort | microbial influence on the mobility of 3 actinides from a salt based nuclear waste repository |
topic | nuclear waste repository bioassociation neodymium brine salt halophile |
url | https://www.mdpi.com/2076-2607/11/6/1370 |
work_keys_str_mv | AT julieswanson microbialinfluenceonthemobilityof3actinidesfromasaltbasednuclearwasterepository AT adriannenavarrette microbialinfluenceonthemobilityof3actinidesfromasaltbasednuclearwasterepository AT jandiknox microbialinfluenceonthemobilityof3actinidesfromasaltbasednuclearwasterepository AT hannahkim microbialinfluenceonthemobilityof3actinidesfromasaltbasednuclearwasterepository AT floydstanley microbialinfluenceonthemobilityof3actinidesfromasaltbasednuclearwasterepository |