Radiation Tolerant 3D Laser Scanner for Structural Inspections in Nuclear Reactor Vessels and Fuel Storage Pools

Accurate and timely assessment of displacements and/or structural damages in nuclear reactor vessels’ components is a key action in routine inspections for planning maintenance and repairs but also in emergency situations for mitigating consequences of nuclear incidents. Nevertheless, all these comp...

Full description

Bibliographic Details
Main Authors: Luigi De Dominicis, Mario Carta, Massimiliano Ciaffi, Luca Falconi, Mario Ferri de Collibus, Massimo Francucci, Massimiliano Guarneri, Marcello Nuvoli, Fabio Pollastrone
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Science and Technology of Nuclear Installations
Online Access:http://dx.doi.org/10.1155/2021/8237946
Description
Summary:Accurate and timely assessment of displacements and/or structural damages in nuclear reactor vessels’ components is a key action in routine inspections for planning maintenance and repairs but also in emergency situations for mitigating consequences of nuclear incidents. Nevertheless, all these components are maintained underwater and reside in high-radiation fields thus imposing harsh operative conditions to inspection devices which must cope with effects such as Cerenkov radiation background, Total Ionizing Radiation (TID), and occlusions in the detectors’ field of view. To date, ultrasonic techniques and video cameras are in use for inspection of components’ integrity and with measurements of volumetric and surface crack opening displacements, respectively. The present work reports the realization of a radiation tolerant laser scanner and the results of tests in a nuclear research reactor vessel for acquisition of 3D models of critical components. The device, qualified for underwater operation and for withstanding up to 1 MGy of TID, is based on a 515 nm laser diode and a fast-scanning electro-optic unit. To evaluate performances in a significant but controlled environment, the device has been deployed in the vessel of a research reactor operated by ENEA in the Casaccia Research Centre in Rome (Italy). A 3D model of the fuel rods assembly through a cooling water column of 7 m has been acquired. The system includes proprietary postprocessing software that automatically recognizes components of interest and provides dimensional analysis. Possible application fields of the system stretch to dimensional analysis also in spent nuclear fuel storage pools.
ISSN:1687-6075
1687-6083