Anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures
Topological insulator is composed of an insulating bulk state and time reversal symmetry protected two-dimensional surface states. One of the characteristics of the surface states is the locking between electron momentum and spin orientation. Here, we report a novel in-plane anisotropic magnetoresis...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2012-12-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.4769894 |
Summary: | Topological insulator is composed of an insulating bulk state and time reversal symmetry protected two-dimensional surface states. One of the characteristics of the surface states is the locking between electron momentum and spin orientation. Here, we report a novel in-plane anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures. To explain the novel effect, we propose that the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructure forms a spin-valve or Giant magnetoresistance device due to spin-momentum locking. The novel in-plane anisotropic magnetoresistance can be explained as a Giant magnetoresistance effect of the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures. |
---|---|
ISSN: | 2158-3226 |