Controlled electroactive release from solid-state conductive elastomer electrodes

This work highlights the development of a conductive elastomer (CE) based electrophoretic platform that enables the transfer of charged molecules from a solid-state CE electrode directly to targeted tissues. Using an elastomer-based electrode containing poly (3,4-ethylenedioxythiophene) nanowires, c...

Full description

Bibliographic Details
Main Authors: Christopher A.R. Chapman, Shanila Fernandez-Patel, Nusrat Jahan, Estelle A. Cuttaz, Alexey Novikov, Josef A. Goding, Rylie A. Green
Format: Article
Language:English
Published: Elsevier 2023-12-01
Series:Materials Today Bio
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590006423003435
Description
Summary:This work highlights the development of a conductive elastomer (CE) based electrophoretic platform that enables the transfer of charged molecules from a solid-state CE electrode directly to targeted tissues. Using an elastomer-based electrode containing poly (3,4-ethylenedioxythiophene) nanowires, controlled electrophoretic delivery of methylene blue (MB) and fluorescein (FLSC) was achieved with applied voltage. Electroactive release of positively charged MB and negatively charged FLSC achieved 33.19 ± 6.47 μg release of MB and 22.36 ± 3.05 μg release of FLSC, a 24 and 20-fold increase in comparison to inhibitory voltages over 1 h. Additionally, selective, and sequential release of the two oppositely charged molecules from a single CE device was demonstrated, showing the potential of this device to be used in multi-drug treatments.
ISSN:2590-0064