In Vitro Activities of Oxazolidinone Antibiotics Alone and in Combination with C-TEMPO against Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilms

Infections caused by methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) are a global health concern. The propensity of MRSA to form biofilms is a significant contributor to its pathogenicity. Strategies to treat biofilms often involve small molecules that disperse the biofilm into...

Full description

Bibliographic Details
Main Authors: Audrey R. N. Ndukwe, Jilong Qin, Sandra Wiedbrauk, Nathan R. B. Boase, Kathryn E. Fairfull-Smith, Makrina Totsika
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Antibiotics
Subjects:
Online Access:https://www.mdpi.com/2079-6382/12/12/1706
Description
Summary:Infections caused by methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) are a global health concern. The propensity of MRSA to form biofilms is a significant contributor to its pathogenicity. Strategies to treat biofilms often involve small molecules that disperse the biofilm into planktonic cells. Linezolid and, by extension, theoxazolidinones have been developed to treat infections caused by Gram-positive bacteria such as MRSA. However, the clinical development of these antibiotics has mainly assessed the susceptibility of planktonic cells to the drug. Previous studies evaluating the anti-biofilm activity of theoxazolidinones have mainly focused on the biofilm inhibition of <i>Enterococcus faecalis</i> and methicillin-sensitive <i>Staphylococcus aureus</i>, with only a few studies investigating the activity of oxazolidinones for eradicating established biofilms for these species. Very little is known about the ability of oxazolidinones to eradicate MRSA biofilms. In this work, five oxazolidinones were assessed against MRSA biofilms using a minimum biofilm eradication concentration (MBEC) assay. All oxazolidinones had inherent antibiofilm activity. However, only ranbezolid could completely eradicate MRSA biofilms at clinically relevant concentrations. The susceptibility of the MRSA biofilms to ranbezolid was synergistically enhanced by coadministration with the nitroxide biofilm dispersal agent C-TEMPO. We presume that ranbezolid acts as a dual warhead drug, which combines the mechanism of action of the oxazolidinones with a nitric oxide donor or cytotoxic drug.
ISSN:2079-6382