Impact of stratospheric aerosol intervention geoengineering on surface air temperature in China: a surface energy budget perspective

<p>Stratospheric aerosol intervention (SAI) geoengineering is a proposed scheme to counteract anthropogenic global warming, but the climate response to SAI, with great regional disparities, remains uncertain. In this study, we use Geoengineering Model Intercomparison Project G4 experiment simu...

Full description

Bibliographic Details
Main Authors: Z. Liu, X. Lang, D. Jiang
Format: Article
Language:English
Published: Copernicus Publications 2022-06-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/7667/2022/acp-22-7667-2022.pdf
Description
Summary:<p>Stratospheric aerosol intervention (SAI) geoengineering is a proposed scheme to counteract anthropogenic global warming, but the climate response to SAI, with great regional disparities, remains uncertain. In this study, we use Geoengineering Model Intercomparison Project G4 experiment simulations from six models that counteract anthropogenic forcing under medium–low emissions (Representative Concentration Pathway 4.5 – RCP4.5) by injecting a certain amount of SO<span class="inline-formula"><sub>2</sub></span> into the stratosphere every year to investigate the surface air temperature response to SAI geoengineering over China. We have found that SAI has led to surface cooling over China during the last 40 years of injection simulation (2030–2069), which varies among models, regions, and seasons. Decreased tropospheric temperature and water vapor and increased stratospheric aerosols induce robust decreases in downward clear-sky longwave and shortwave radiation fluxes at the surface, respectively, dominating the temperature change over China. Changes in cloud effective forcing and surface albedo feedback also relate to the temperature response but with large spatial and seasonal variations. We find that the increased summer cloud cover and winter surface albedo lead to strong cooling, while the decreased summer cloud cover and winter surface albedo lead to weak cooling or even insignificant warming for the certain subregions and models. Our results suggest that cloud and land surface processes in models dominate the spatial pattern of SAI-induced surface air temperature change over China.</p>
ISSN:1680-7316
1680-7324