Power System Impedance Estimation Using a Fast Voltage and Current Changes Measurements

Equivalent power system impedance is an important electrical quantity from many points of view. Areas in which this parameter plays an important role include, in particular: Voltage stability analysis, power quality, or fault condition analysis. Power system impedance estimation in real operation co...

Full description

Bibliographic Details
Main Authors: Martin Kanálik, Anastázia Margitová, Ľubomír Beňa, Andrea Kanáliková
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/1/63
Description
Summary:Equivalent power system impedance is an important electrical quantity from many points of view. Areas in which this parameter plays an important role include, in particular: Voltage stability analysis, power quality, or fault condition analysis. Power system impedance estimation in real operation conditions can be performed by one of the non-invasive methods described by different authors. This paper aims to investigate and compare seven different methods for power system impedance estimation based on voltage and current variations measurement. After a brief description of selected methods, these methods were applied for power system impedance estimation in the case of two simple simulation tests and then in the case of three real measured data. Voltage and current changes used for power system impedance estimation in real conditions were measured in high voltage (HV) and medium voltage (MV) substations feeding steel mill with the electric arc furnace (EAF) operation. As the results presented in this paper have shown, not all of the methods analyzed are suitable for determining the power system impedance based on the fast step changes of voltage and current that occur, for example, during an EAF operation. Indeed, some of the tested methods were originally designed to determine the power system impedance from changes in voltages and currents recorded at steady state.
ISSN:1996-1073