On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpa...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2006/96737 |
Summary: | <p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpansive commutative semigroup of continuous selfmappings. If the <inline-formula><graphic file="1687-1812-2006-96737-i4.gif"/></inline-formula>-closure of <inline-formula><graphic file="1687-1812-2006-96737-i5.gif"/></inline-formula> is nonempty, then the closure of the orbit of any <inline-formula><graphic file="1687-1812-2006-96737-i6.gif"/></inline-formula>-closure point is a commutative topological group.</p> |
---|---|
ISSN: | 1687-1820 1687-1812 |