On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings

<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpa...

Full description

Bibliographic Details
Main Author: Kiang MoTak
Format: Article
Language:English
Published: SpringerOpen 2006-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2006/96737
Description
Summary:<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpansive commutative semigroup of continuous selfmappings. If the <inline-formula><graphic file="1687-1812-2006-96737-i4.gif"/></inline-formula>-closure of <inline-formula><graphic file="1687-1812-2006-96737-i5.gif"/></inline-formula> is nonempty, then the closure of the orbit of any <inline-formula><graphic file="1687-1812-2006-96737-i6.gif"/></inline-formula>-closure point is a commutative topological group.</p>
ISSN:1687-1820
1687-1812