On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings
<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpa...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2006/96737 |
_version_ | 1798027337260859392 |
---|---|
author | Kiang MoTak |
author_facet | Kiang MoTak |
author_sort | Kiang MoTak |
collection | DOAJ |
description | <p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpansive commutative semigroup of continuous selfmappings. If the <inline-formula><graphic file="1687-1812-2006-96737-i4.gif"/></inline-formula>-closure of <inline-formula><graphic file="1687-1812-2006-96737-i5.gif"/></inline-formula> is nonempty, then the closure of the orbit of any <inline-formula><graphic file="1687-1812-2006-96737-i6.gif"/></inline-formula>-closure point is a commutative topological group.</p> |
first_indexed | 2024-04-11T18:50:48Z |
format | Article |
id | doaj.art-87ab6ba796f14b6491d30e5db80b1570 |
institution | Directory Open Access Journal |
issn | 1687-1820 1687-1812 |
language | English |
last_indexed | 2024-04-11T18:50:48Z |
publishDate | 2006-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Fixed Point Theory and Applications |
spelling | doaj.art-87ab6ba796f14b6491d30e5db80b15702022-12-22T04:08:25ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122006-01-012006196737On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappingsKiang MoTak<p/> <p>Let <inline-formula><graphic file="1687-1812-2006-96737-i2.gif"/></inline-formula> be a closed subset of a Banach space and <inline-formula><graphic file="1687-1812-2006-96737-i3.gif"/></inline-formula> an ultimately nonexpansive commutative semigroup of continuous selfmappings. If the <inline-formula><graphic file="1687-1812-2006-96737-i4.gif"/></inline-formula>-closure of <inline-formula><graphic file="1687-1812-2006-96737-i5.gif"/></inline-formula> is nonempty, then the closure of the orbit of any <inline-formula><graphic file="1687-1812-2006-96737-i6.gif"/></inline-formula>-closure point is a commutative topological group.</p>http://www.fixedpointtheoryandapplications.com/content/2006/96737 |
spellingShingle | Kiang MoTak On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings Fixed Point Theory and Applications |
title | On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_full | On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_fullStr | On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_full_unstemmed | On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_short | On the orbits of <inline-formula><graphic file="1687-1812-2006-96737-i1.gif"/></inline-formula>-closure points of ultimately nonexpansive mappings |
title_sort | on the orbits of inline formula graphic file 1687 1812 2006 96737 i1 gif inline formula closure points of ultimately nonexpansive mappings |
url | http://www.fixedpointtheoryandapplications.com/content/2006/96737 |
work_keys_str_mv | AT kiangmotak ontheorbitsofinlineformulagraphicfile16871812200696737i1gifinlineformulaclosurepointsofultimatelynonexpansivemappings |