Research on Control Method of PEMFC Cathode Oxygen Excess Ratio
Proton exchange membrane fuel cell (PEMFC) is considered to be a promising new energy technology due to its high power density and low operating temperature. Oxygen excess ratio (OER) is one of the main factors that affect the performance of fuel cell systems. The key of OER control is to prevent th...
Format: | Article |
---|---|
Language: | zho |
Published: |
EDP Sciences
2020-10-01
|
Series: | Xibei Gongye Daxue Xuebao |
Subjects: | |
Online Access: | https://www.jnwpu.org/articles/jnwpu/full_html/2020/05/jnwpu2020385p987/jnwpu2020385p987.html |
Summary: | Proton exchange membrane fuel cell (PEMFC) is considered to be a promising new energy technology due to its high power density and low operating temperature. Oxygen excess ratio (OER) is one of the main factors that affect the performance of fuel cell systems. The key of OER control is to prevent the "oxygen starvation" phenomena by controlling the air flow input of the cathode. The net output power is optimized to improve the performance of the system while maintaining the system working properly. First of all, a sixth-order dynamic model of PEMFC based on the air supply system is established in MATLAB, and the function equation of the oxygen excess ratio to the load current is obtained. Based on PID control, fuzzy control and super-twisting second-order sliding mode control, an improved fuzzy-sliding mode control strategy is proposed to realize OER control. Simulation results show that this method has good robustness and fast adjustment performance. |
---|---|
ISSN: | 1000-2758 2609-7125 |