Summary: | Abstract Eggshell peptides (EP) majorly contribute to rapid bone building in chicks, wherefore this paper investigated their potential for stimulating osteogenesis in vitro. In this study, the effects of EP, also called putamen ovi peptides and a combination of hyaluronic acid with EP in cell culture medium were tested towards proliferation, differentiation, gene expression and mineralization of bovine osteoprogenitors and primary human osteoblasts. The influence of EP at concentrations of 0.005 g/L, 0.5 g/L and 0.5 g/L with 0.25% hyaluronic acid was analyzed using immunocytochemical staining of bone-specific matrix proteins, namely collagen type I, osteonectin, osteopontin and osteocalcin, to prove osteoblastic differentiation. Additionally, Richardson-staining was performed. All tests revealed a superior osteoblastic differentiation with EP at 0.5 g/L after 5 days of cultivation. Hyaluronic acid alone showed controversial results and partially constrained osteoblastic differentiation in combination with EP to a level as low as for pure EP at 0.005 g/L. Of particular interest is the osteoblast-typical mineralization, as an important indicator of bone formation, which was measured indirectly via the calcium concentration after cultivation over 4 weeks. The mineralization showed an increase by a factor of 286 during the cultivation of primary human osteoblasts with hyaluronic acid and EP. Meanwhile, cell cultures treated with EP (0.5 g/L) only showed an 80-fold increase in calcium concentration. The influence of EP (0.5 g/L) on primary human osteoblasts was investigated by gene expression after 2 weeks of cultivation. Microarray and qRT-PCR analysis showed a strongly increased expression of main important genes in bone formation, bone regeneration and the physiological bone remodelling processes. Namely, BMP 2, osteopontin and the matrix metalloproteinases 1 and 9, were present during in vitro osteoprogenitor culture with EP. By explicitly underlining the potential of eggshell peptides for stimulating osteogenesis, as well as emphasizing complex and controversial interaction with hyaluronan, this manuscript is relevant for developing new functionalized biomaterials for bone regeneration.
|