PM<sub>2.5</sub>&thinsp;∕&thinsp;PM<sub>10</sub> ratio prediction based on a long short-term memory neural network in Wuhan, China

<p>Air pollution is a serious problem in China that urgently needs to be addressed. Air pollution has a great impact on the lives of citizens and on urban development. The particulate matter (PM) value is usually used to indicate the degree of air pollution. In addition to that of PM<span c...

Full description

Bibliographic Details
Main Authors: X. Wu, Y. Wang, S. He, Z. Wu
Format: Article
Language:English
Published: Copernicus Publications 2020-03-01
Series:Geoscientific Model Development
Online Access:https://www.geosci-model-dev.net/13/1499/2020/gmd-13-1499-2020.pdf
Description
Summary:<p>Air pollution is a serious problem in China that urgently needs to be addressed. Air pollution has a great impact on the lives of citizens and on urban development. The particulate matter (PM) value is usually used to indicate the degree of air pollution. In addition to that of PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span>, the use of the PM<span class="inline-formula"><sub>2.5</sub></span>&thinsp;<span class="inline-formula">∕</span>&thinsp;PM<span class="inline-formula"><sub>10</sub></span> ratio as an indicator and assessor of air pollution has also become more widespread. This ratio reflects the air pollution conditions and pollution sources. In this paper, a better composite prediction system aimed at improving the accuracy and spatiotemporal applicability of PM<span class="inline-formula"><sub>2.5</sub></span>&thinsp;<span class="inline-formula">∕</span>&thinsp;PM<span class="inline-formula"><sub>10</sub></span> was proposed. First, the aerosol optical depth (AOD) in 2017 in Wuhan was obtained based on Moderate Resolution Imaging Spectroradiometer (MODIS) images, with a 1&thinsp;km spatial resolution, by using the dense dark vegetation (DDV) method. Second, the AOD was corrected by calculating the planetary boundary layer height (PBLH) and relative humidity (RH). Third, the coefficient of determination of the optimal subset selection was used to select the factor with the highest correlation with PM<span class="inline-formula"><sub>2.5</sub></span>&thinsp;<span class="inline-formula">∕</span>&thinsp;PM<span class="inline-formula"><sub>10</sub></span> from meteorological factors and gaseous pollutants. Then, PM<span class="inline-formula"><sub>2.5</sub></span>&thinsp;<span class="inline-formula">∕</span>&thinsp;PM<span class="inline-formula"><sub>10</sub></span> predictions based on time, space, and random patterns were obtained by using nine factors (the corrected AOD, meteorological data, and gaseous pollutant data) with the long short-term memory (LSTM) neural network method, which is a dynamic model that remembers historical information and applies it to the current output. Finally, the LSTM model prediction results were compared and analyzed with the results of other intelligent models. The results showed that the LSTM model had significant advantages in the average, maximum, and minimum accuracy and the stability of PM<span class="inline-formula"><sub>2.5</sub></span>&thinsp;<span class="inline-formula">∕</span>&thinsp;PM<span class="inline-formula"><sub>10</sub></span> prediction.</p>
ISSN:1991-959X
1991-9603