C1,α-rectifiability in low codimension in Heisenberg groups

A natural higher-order notion of C1,α{C}^{1,\alpha }-rectifiability, 0<α≤10\lt \alpha \le 1, is introduced for subsets of the Heisenberg groups Hn{{\mathbb{H}}}^{n} in terms of covering a set almost everywhere with a countable union of (CH1,α,H)\left({{\bf{C}}}_{H}^{1,\alpha },{\mathbb{H}})-regul...

Full description

Bibliographic Details
Main Authors: Idu Kennedy Obinna, Maiale Francesco Paolo
Format: Article
Language:English
Published: De Gruyter 2024-02-01
Series:Analysis and Geometry in Metric Spaces
Subjects:
Online Access:https://doi.org/10.1515/agms-2023-0105
_version_ 1797294681410764800
author Idu Kennedy Obinna
Maiale Francesco Paolo
author_facet Idu Kennedy Obinna
Maiale Francesco Paolo
author_sort Idu Kennedy Obinna
collection DOAJ
description A natural higher-order notion of C1,α{C}^{1,\alpha }-rectifiability, 0<α≤10\lt \alpha \le 1, is introduced for subsets of the Heisenberg groups Hn{{\mathbb{H}}}^{n} in terms of covering a set almost everywhere with a countable union of (CH1,α,H)\left({{\bf{C}}}_{H}^{1,\alpha },{\mathbb{H}})-regular surfaces. Using this, we prove a geometric characterization of C1,α{C}^{1,\alpha }-rectifiable sets of low codimension in Heisenberg groups Hn{{\mathbb{H}}}^{n} in terms of an almost everywhere existence of suitable approximate tangent paraboloids.
first_indexed 2024-03-07T21:34:45Z
format Article
id doaj.art-87c2dd51fea54509834380ce2a2e0ed6
institution Directory Open Access Journal
issn 2299-3274
language English
last_indexed 2024-03-07T21:34:45Z
publishDate 2024-02-01
publisher De Gruyter
record_format Article
series Analysis and Geometry in Metric Spaces
spelling doaj.art-87c2dd51fea54509834380ce2a2e0ed62024-02-26T14:28:00ZengDe GruyterAnalysis and Geometry in Metric Spaces2299-32742024-02-0112152755510.1515/agms-2023-0105C1,α-rectifiability in low codimension in Heisenberg groupsIdu Kennedy Obinna0Maiale Francesco Paolo1Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, CanadaGran Sasso Science Institute, Viale F. Crispi 7, 67100 L’Aquila, ItalyA natural higher-order notion of C1,α{C}^{1,\alpha }-rectifiability, 0<α≤10\lt \alpha \le 1, is introduced for subsets of the Heisenberg groups Hn{{\mathbb{H}}}^{n} in terms of covering a set almost everywhere with a countable union of (CH1,α,H)\left({{\bf{C}}}_{H}^{1,\alpha },{\mathbb{H}})-regular surfaces. Using this, we prove a geometric characterization of C1,α{C}^{1,\alpha }-rectifiable sets of low codimension in Heisenberg groups Hn{{\mathbb{H}}}^{n} in terms of an almost everywhere existence of suitable approximate tangent paraboloids.https://doi.org/10.1515/agms-2023-0105higher orderapproximate tangent paraboloidsmetric spaces28a75 (primary)43a8053c17 (secondary)
spellingShingle Idu Kennedy Obinna
Maiale Francesco Paolo
C1,α-rectifiability in low codimension in Heisenberg groups
Analysis and Geometry in Metric Spaces
higher order
approximate tangent paraboloids
metric spaces
28a75 (primary)
43a80
53c17 (secondary)
title C1,α-rectifiability in low codimension in Heisenberg groups
title_full C1,α-rectifiability in low codimension in Heisenberg groups
title_fullStr C1,α-rectifiability in low codimension in Heisenberg groups
title_full_unstemmed C1,α-rectifiability in low codimension in Heisenberg groups
title_short C1,α-rectifiability in low codimension in Heisenberg groups
title_sort c1 α rectifiability in low codimension in heisenberg groups
topic higher order
approximate tangent paraboloids
metric spaces
28a75 (primary)
43a80
53c17 (secondary)
url https://doi.org/10.1515/agms-2023-0105
work_keys_str_mv AT idukennedyobinna c1arectifiabilityinlowcodimensioninheisenberggroups
AT maialefrancescopaolo c1arectifiabilityinlowcodimensioninheisenberggroups