Metal-Organic Frameworks Based Multifunctional Materials for Solar Cells: A Review

Developing low-cost and stable materials for converting solar energy into electricity is vital in meeting the world’s energy demand. Metal-organic frameworks (MOFs) have gained attention for solar cells due to their natural porous architectures and tunable chemical structures. They are built by high...

Full description

Bibliographic Details
Main Authors: Ha Huu Do, Soo Young Kim
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/10/1830
Description
Summary:Developing low-cost and stable materials for converting solar energy into electricity is vital in meeting the world’s energy demand. Metal-organic frameworks (MOFs) have gained attention for solar cells due to their natural porous architectures and tunable chemical structures. They are built by high-symmetry metal clusters as secondary building units and organic carboxylate/azolate ligands as linkers. This review commences with an exploration of the synthetic methods of MOFs. Moreover, we discuss the various roles of MOFs, including photoanodes and counter electrodes in dye-sensitized solar cells and interfacial layers and charge carriers in perovskite solar cells. Additionally, studies involving the application of MOFs for OSC were additionally presented. Ultimately, burdensome tasks and possible directions for advancing MOFs-based nanomaterials are provided for solar cells.
ISSN:2073-8994