Aosta Valley Mountain Springs: A Preliminary Analysis for Understanding Variations in Water Resource Availability under Climate Change

The availability of freshwater resources in mountain areas has been affected by climate change impacts on groundwater storage mechanisms. As a web of complex interactions characterizes climate systems, understanding how water storage conditions have changed in response to climate-driven factors in d...

Full description

Bibliographic Details
Main Authors: Martina Gizzi, Michele Mondani, Glenda Taddia, Enrico Suozzi, Stefano Lo Russo
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/14/7/1004
Description
Summary:The availability of freshwater resources in mountain areas has been affected by climate change impacts on groundwater storage mechanisms. As a web of complex interactions characterizes climate systems, understanding how water storage conditions have changed in response to climate-driven factors in different Italian contexts is becoming increasingly crucial. In order to comprehend the relationship between changes in weather conditions and water availability in the Aosta Valley region and how their trends have changed over the last decade, a 7-year discharge series of different Aosta Valley springs (Promise, Alpe Perrot, Promiod, Cheserod) and precipitation data are analysed. Precipitation and flow rate trends using the Mann–Kendall and Sen’s slope trend detection tests were also performed. Not all of the Aosta Valley mountain springs detected seem to respond to the climate variation with a decrease in their stored water resources. Unlike Promiod, Alpe Perrot, Cheserod, and Promise springs have experienced an increase in water discharged amount during the detected 7-year period. This behavior occurs despite the available precipitation data for the associated Sant Vincent, Aymaville-Viayes, La Thuile-Villaret, Champdepraz meteorological stations revealing an overall decreasing trend in annual rainfall (mm), with a slight increase in intensity (mm/day) as a result of the reduction in rainfall events (number of rainy days).
ISSN:2073-4441