Performance Analysis of a RED-MED Salinity Gradient Heat Engine

A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely deve...

Full description

Bibliographic Details
Main Authors: Patricia Palenzuela, Marina Micari, Bartolomé Ortega-Delgado, Francesco Giacalone, Guillermo Zaragoza, Diego-César Alarcón-Padilla, Andrea Cipollina, Alessandro Tamburini, Giorgio Micale
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/11/12/3385
_version_ 1818038039891410944
author Patricia Palenzuela
Marina Micari
Bartolomé Ortega-Delgado
Francesco Giacalone
Guillermo Zaragoza
Diego-César Alarcón-Padilla
Andrea Cipollina
Alessandro Tamburini
Giorgio Micale
author_facet Patricia Palenzuela
Marina Micari
Bartolomé Ortega-Delgado
Francesco Giacalone
Guillermo Zaragoza
Diego-César Alarcón-Padilla
Andrea Cipollina
Alessandro Tamburini
Giorgio Micale
author_sort Patricia Palenzuela
collection DOAJ
description A performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall system exergy efficiency. Results show how the membrane properties (i.e., electrical resistance, permselectivity, water and salt permeability) dramatically affect the performance of the RED process. In particular, the power density achievable using membranes with optimized features (ideal membranes) can be more than three times higher than that obtained with current reference ion exchange membranes. On the other hand, MED STC is strongly influenced by the available waste heat temperature, feed salinity and recovery ratio to be achieved. Lowest values of STC below 25 kWh/m<sup>3</sup> can be reached at 100 &#176;C and 27 effects. Increasing the feed salinity also increases the STC, while an increase in the recovery ratio is beneficial for the thermal efficiency of the system. For the integrated system, a more complex influence of operating parameters has been found, leading to the identification of some favorable operating conditions in which exergy efficiency close to 7% (1.4% thermal) can be achieved for the case of current membranes, and up to almost 31% (6.6% thermal) assuming ideal membrane properties.
first_indexed 2024-12-10T07:36:24Z
format Article
id doaj.art-87d025d1662541ad9c89667670f47dac
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-12-10T07:36:24Z
publishDate 2018-12-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-87d025d1662541ad9c89667670f47dac2022-12-22T01:57:25ZengMDPI AGEnergies1996-10732018-12-011112338510.3390/en11123385en11123385Performance Analysis of a RED-MED Salinity Gradient Heat EnginePatricia Palenzuela0Marina Micari1Bartolomé Ortega-Delgado2Francesco Giacalone3Guillermo Zaragoza4Diego-César Alarcón-Padilla5Andrea Cipollina6Alessandro Tamburini7Giorgio Micale8CIEMAT-Plataforma Solar de Almería, Ctra. de Senés s/n, 04200 Tabernas, Almería, SpainDIID—Dipartimento dell’Innovazione Industriale e Digitale—Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo (UNIPA), viale delle Scienze, Ed. 6, 90128 Palermo, ItalyDIID—Dipartimento dell’Innovazione Industriale e Digitale—Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo (UNIPA), viale delle Scienze, Ed. 6, 90128 Palermo, ItalyDIID—Dipartimento dell’Innovazione Industriale e Digitale—Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo (UNIPA), viale delle Scienze, Ed. 6, 90128 Palermo, ItalyCIEMAT-Plataforma Solar de Almería, Ctra. de Senés s/n, 04200 Tabernas, Almería, SpainCIEMAT-Plataforma Solar de Almería, Ctra. de Senés s/n, 04200 Tabernas, Almería, SpainDIID—Dipartimento dell’Innovazione Industriale e Digitale—Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo (UNIPA), viale delle Scienze, Ed. 6, 90128 Palermo, ItalyDIID—Dipartimento dell’Innovazione Industriale e Digitale—Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo (UNIPA), viale delle Scienze, Ed. 6, 90128 Palermo, ItalyDIID—Dipartimento dell’Innovazione Industriale e Digitale—Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo (UNIPA), viale delle Scienze, Ed. 6, 90128 Palermo, ItalyA performance analysis of a salinity gradient heat engine (SGP-HE) is presented for the conversion of low temperature heat into power via a closed-loop Reverse Electrodialysis (RED) coupled with Multi-Effect Distillation (MED). Mathematical models for the RED and MED systems have been purposely developed in order to investigate the performance of both processes and have been then coupled to analyze the efficiency of the overall integrated system. The influence of the main operating conditions (i.e., solutions concentration and velocity) has been quantified, looking at the power density and conversion efficiency of the RED unit, MED Specific Thermal Consumption (STC) and at the overall system exergy efficiency. Results show how the membrane properties (i.e., electrical resistance, permselectivity, water and salt permeability) dramatically affect the performance of the RED process. In particular, the power density achievable using membranes with optimized features (ideal membranes) can be more than three times higher than that obtained with current reference ion exchange membranes. On the other hand, MED STC is strongly influenced by the available waste heat temperature, feed salinity and recovery ratio to be achieved. Lowest values of STC below 25 kWh/m<sup>3</sup> can be reached at 100 &#176;C and 27 effects. Increasing the feed salinity also increases the STC, while an increase in the recovery ratio is beneficial for the thermal efficiency of the system. For the integrated system, a more complex influence of operating parameters has been found, leading to the identification of some favorable operating conditions in which exergy efficiency close to 7% (1.4% thermal) can be achieved for the case of current membranes, and up to almost 31% (6.6% thermal) assuming ideal membrane properties.https://www.mdpi.com/1996-1073/11/12/3385salinity gradient energyexergyartificial solutionsmodelingheat engineRED-HE
spellingShingle Patricia Palenzuela
Marina Micari
Bartolomé Ortega-Delgado
Francesco Giacalone
Guillermo Zaragoza
Diego-César Alarcón-Padilla
Andrea Cipollina
Alessandro Tamburini
Giorgio Micale
Performance Analysis of a RED-MED Salinity Gradient Heat Engine
Energies
salinity gradient energy
exergy
artificial solutions
modeling
heat engine
RED-HE
title Performance Analysis of a RED-MED Salinity Gradient Heat Engine
title_full Performance Analysis of a RED-MED Salinity Gradient Heat Engine
title_fullStr Performance Analysis of a RED-MED Salinity Gradient Heat Engine
title_full_unstemmed Performance Analysis of a RED-MED Salinity Gradient Heat Engine
title_short Performance Analysis of a RED-MED Salinity Gradient Heat Engine
title_sort performance analysis of a red med salinity gradient heat engine
topic salinity gradient energy
exergy
artificial solutions
modeling
heat engine
RED-HE
url https://www.mdpi.com/1996-1073/11/12/3385
work_keys_str_mv AT patriciapalenzuela performanceanalysisofaredmedsalinitygradientheatengine
AT marinamicari performanceanalysisofaredmedsalinitygradientheatengine
AT bartolomeortegadelgado performanceanalysisofaredmedsalinitygradientheatengine
AT francescogiacalone performanceanalysisofaredmedsalinitygradientheatengine
AT guillermozaragoza performanceanalysisofaredmedsalinitygradientheatengine
AT diegocesaralarconpadilla performanceanalysisofaredmedsalinitygradientheatengine
AT andreacipollina performanceanalysisofaredmedsalinitygradientheatengine
AT alessandrotamburini performanceanalysisofaredmedsalinitygradientheatengine
AT giorgiomicale performanceanalysisofaredmedsalinitygradientheatengine