A Comprehensive Review of miRNAs and Their Epigenetic Effects in Glioblastoma

Glioblastoma is the most aggressive form of brain tumor originating from glial cells with a maximum life expectancy of 14.6 months. Despite the establishment of multiple promising therapies, the clinical outcome of glioblastoma patients is abysmal. Drug resistance has been identified as a major fact...

Full description

Bibliographic Details
Main Authors: Hera Hasan, Mohammad Afzal, Javier S. Castresana, Mehdi H. Shahi
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/12/12/1578
Description
Summary:Glioblastoma is the most aggressive form of brain tumor originating from glial cells with a maximum life expectancy of 14.6 months. Despite the establishment of multiple promising therapies, the clinical outcome of glioblastoma patients is abysmal. Drug resistance has been identified as a major factor contributing to the failure of current multimodal therapy. Epigenetic modification, especially DNA methylation has been identified as a major regulatory mechanism behind glioblastoma progression. In addition, miRNAs, a class of non-coding RNA, have been found to play a role in the regulation as well as in the diagnosis of glioblastoma. The relationship between epigenetics, drug resistance, and glioblastoma progression has been clearly demonstrated. <i>MGMT</i> hypermethylation, leading to a lack of <i>MGMT</i> expression, is associated with a cytotoxic effect of TMZ in GBM, while resistance to TMZ frequently appears in <i>MGMT</i> non-methylated GBM. In this review, we will elaborate on known miRNAs linked to glioblastoma; their distinctive oncogenic or tumor suppressor roles; and how epigenetic modification of miRNAs, particularly via methylation, leads to their upregulation or downregulation in glioblastoma. Moreover, we will try to identify those miRNAs that might be potential regulators of <i>MGMT</i> expression and their role as predictors of tumor response to temozolomide treatment. Although we do not impact clinical data and survival, we open possible experimental approaches to treat GBM, although they should be further validated with clinically oriented studies.
ISSN:2073-4409