Stability in nonlinear neutral Levin-Nohel integro-dynamic equations

In this paper we use the Krasnoselskii-Burton's fixed point theorem to obtain asymptotic stability and stability results about the zero solution for the following nonlinear neutral Levin-Nohel integro-dynamic equation xΔ (t)+∫tt-τ (t) a(t,s)g(x(s)) Δ s+c(t)xΔ̃ (t-τ (t)) = 0. The results o...

Full description

Bibliographic Details
Main Authors: Kamel Ali Khelil, Abdelouaheb Ardjouni, Ahcene Djoudi
Format: Article
Language:English
Published: University Constantin Brancusi of Targu-Jiu 2019-06-01
Series:Surveys in Mathematics and its Applications
Subjects:
Online Access:http://www.utgjiu.ro/math/sma/v14/p14_09.pdf
_version_ 1818877995595595776
author Kamel Ali Khelil
Abdelouaheb Ardjouni
Ahcene Djoudi
author_facet Kamel Ali Khelil
Abdelouaheb Ardjouni
Ahcene Djoudi
author_sort Kamel Ali Khelil
collection DOAJ
description In this paper we use the Krasnoselskii-Burton's fixed point theorem to obtain asymptotic stability and stability results about the zero solution for the following nonlinear neutral Levin-Nohel integro-dynamic equation xΔ (t)+∫tt-τ (t) a(t,s)g(x(s)) Δ s+c(t)xΔ̃ (t-τ (t)) = 0. The results obtained here extend the work of Ali Khelil, Ardjouni and Djoudi [Korean J. Math, 2017].
first_indexed 2024-12-19T14:07:09Z
format Article
id doaj.art-87e875aeab0940819dc18ce2729fb16e
institution Directory Open Access Journal
issn 1843-7265
1842-6298
language English
last_indexed 2024-12-19T14:07:09Z
publishDate 2019-06-01
publisher University Constantin Brancusi of Targu-Jiu
record_format Article
series Surveys in Mathematics and its Applications
spelling doaj.art-87e875aeab0940819dc18ce2729fb16e2022-12-21T20:18:16ZengUniversity Constantin Brancusi of Targu-JiuSurveys in Mathematics and its Applications1843-72651842-62982019-06-0114 (2019)173193Stability in nonlinear neutral Levin-Nohel integro-dynamic equationsKamel Ali Khelil0Abdelouaheb Ardjouni1Ahcene Djoudi2High School of Management Sciences Annaba, Bp 322 Boulevard 24 February 1956, Annaba, 23000, Algeria.Department of Mathematics and Informatics, University of Souk Ahras, P.O. Box 1553, Souk Ahras, 41000, Algeria.Applied Mathematics Lab, Department of Mathematics, University of Annaba, P.O. Box 12, Annaba 23000, Algeria.In this paper we use the Krasnoselskii-Burton's fixed point theorem to obtain asymptotic stability and stability results about the zero solution for the following nonlinear neutral Levin-Nohel integro-dynamic equation xΔ (t)+∫tt-τ (t) a(t,s)g(x(s)) Δ s+c(t)xΔ̃ (t-τ (t)) = 0. The results obtained here extend the work of Ali Khelil, Ardjouni and Djoudi [Korean J. Math, 2017].http://www.utgjiu.ro/math/sma/v14/p14_09.pdffixed pointsneutral integro-dynamic equationsstabilitytime scale
spellingShingle Kamel Ali Khelil
Abdelouaheb Ardjouni
Ahcene Djoudi
Stability in nonlinear neutral Levin-Nohel integro-dynamic equations
Surveys in Mathematics and its Applications
fixed points
neutral integro-dynamic equations
stability
time scale
title Stability in nonlinear neutral Levin-Nohel integro-dynamic equations
title_full Stability in nonlinear neutral Levin-Nohel integro-dynamic equations
title_fullStr Stability in nonlinear neutral Levin-Nohel integro-dynamic equations
title_full_unstemmed Stability in nonlinear neutral Levin-Nohel integro-dynamic equations
title_short Stability in nonlinear neutral Levin-Nohel integro-dynamic equations
title_sort stability in nonlinear neutral levin nohel integro dynamic equations
topic fixed points
neutral integro-dynamic equations
stability
time scale
url http://www.utgjiu.ro/math/sma/v14/p14_09.pdf
work_keys_str_mv AT kamelalikhelil stabilityinnonlinearneutrallevinnohelintegrodynamicequations
AT abdelouahebardjouni stabilityinnonlinearneutrallevinnohelintegrodynamicequations
AT ahcenedjoudi stabilityinnonlinearneutrallevinnohelintegrodynamicequations