Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration

Laser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in...

Full description

Bibliographic Details
Main Authors: Meng Liu, Jia-Xiang Gao, Wei-Min Wang, Yu-Tong Li
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/6/2924
_version_ 1827629490613780480
author Meng Liu
Jia-Xiang Gao
Wei-Min Wang
Yu-Tong Li
author_facet Meng Liu
Jia-Xiang Gao
Wei-Min Wang
Yu-Tong Li
author_sort Meng Liu
collection DOAJ
description Laser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in which a circularly-polarized (CP) laser pulse illuminates a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>H</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> thin foil followed by a large-scale near-critical-density (NCD) plasma. In the laser-foil interaction, a longitudinal charge-separated electric field is excited to accelerate ions together with the heating of electrons. The heating can be alleviated by the continuous replenishment of cold electrons of the NCD plasma as the laser pulse and the pre-accelerated ions enter into the NCD plasma. With the relativistically transparent propagation of the pulse in the NCD plasma, the accelerating field with large amplitude is persistent, and its propagating speed becomes relatively low, which further accelerates the pre-accelerated ions. Our particle-in-cell (PIC) simulation shows that the SRPA scheme works efficiently with the laser intensity ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.85</mn><mo>×</mo><msup><mn>10</mn><mn>21</mn></msup></mrow></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.38</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup></mrow></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, e.g., a well-collimated quasi-monoenergetic proton beam with peak energy ∼1.2 GeV can be generated by a 2.74 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>22</mn></msup></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> pulse, and the energy conversion efficiency from the laser pulse to the proton beam is about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>16</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The QED effects have slight influence on this SRPA scheme.
first_indexed 2024-03-09T13:52:10Z
format Article
id doaj.art-87ebedaa4c674516bc51fe8eec6c5e4a
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-09T13:52:10Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-87ebedaa4c674516bc51fe8eec6c5e4a2023-11-30T20:49:04ZengMDPI AGApplied Sciences2076-34172022-03-01126292410.3390/app12062924Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure AccelerationMeng Liu0Jia-Xiang Gao1Wei-Min Wang2Yu-Tong Li3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, ChinaBeijing Key Laboratory of Opto-Electronic Functional Materials and Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, ChinaBeijing Key Laboratory of Opto-Electronic Functional Materials and Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, ChinaBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, ChinaLaser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in which a circularly-polarized (CP) laser pulse illuminates a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>H</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> thin foil followed by a large-scale near-critical-density (NCD) plasma. In the laser-foil interaction, a longitudinal charge-separated electric field is excited to accelerate ions together with the heating of electrons. The heating can be alleviated by the continuous replenishment of cold electrons of the NCD plasma as the laser pulse and the pre-accelerated ions enter into the NCD plasma. With the relativistically transparent propagation of the pulse in the NCD plasma, the accelerating field with large amplitude is persistent, and its propagating speed becomes relatively low, which further accelerates the pre-accelerated ions. Our particle-in-cell (PIC) simulation shows that the SRPA scheme works efficiently with the laser intensity ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.85</mn><mo>×</mo><msup><mn>10</mn><mn>21</mn></msup></mrow></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.38</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup></mrow></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, e.g., a well-collimated quasi-monoenergetic proton beam with peak energy ∼1.2 GeV can be generated by a 2.74 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>22</mn></msup></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> pulse, and the energy conversion efficiency from the laser pulse to the proton beam is about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>16</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The QED effects have slight influence on this SRPA scheme.https://www.mdpi.com/2076-3417/12/6/2924laser driven ion accelerationradiation pressure accelerationnear-critical-density plasma
spellingShingle Meng Liu
Jia-Xiang Gao
Wei-Min Wang
Yu-Tong Li
Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration
Applied Sciences
laser driven ion acceleration
radiation pressure acceleration
near-critical-density plasma
title Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration
title_full Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration
title_fullStr Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration
title_full_unstemmed Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration
title_short Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration
title_sort theoretical study of the efficient ion acceleration driven by petawatt class lasers via stable radiation pressure acceleration
topic laser driven ion acceleration
radiation pressure acceleration
near-critical-density plasma
url https://www.mdpi.com/2076-3417/12/6/2924
work_keys_str_mv AT mengliu theoreticalstudyoftheefficientionaccelerationdrivenbypetawattclasslasersviastableradiationpressureacceleration
AT jiaxianggao theoreticalstudyoftheefficientionaccelerationdrivenbypetawattclasslasersviastableradiationpressureacceleration
AT weiminwang theoreticalstudyoftheefficientionaccelerationdrivenbypetawattclasslasersviastableradiationpressureacceleration
AT yutongli theoreticalstudyoftheefficientionaccelerationdrivenbypetawattclasslasersviastableradiationpressureacceleration