Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration
Laser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-03-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/12/6/2924 |
_version_ | 1827629490613780480 |
---|---|
author | Meng Liu Jia-Xiang Gao Wei-Min Wang Yu-Tong Li |
author_facet | Meng Liu Jia-Xiang Gao Wei-Min Wang Yu-Tong Li |
author_sort | Meng Liu |
collection | DOAJ |
description | Laser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in which a circularly-polarized (CP) laser pulse illuminates a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>H</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> thin foil followed by a large-scale near-critical-density (NCD) plasma. In the laser-foil interaction, a longitudinal charge-separated electric field is excited to accelerate ions together with the heating of electrons. The heating can be alleviated by the continuous replenishment of cold electrons of the NCD plasma as the laser pulse and the pre-accelerated ions enter into the NCD plasma. With the relativistically transparent propagation of the pulse in the NCD plasma, the accelerating field with large amplitude is persistent, and its propagating speed becomes relatively low, which further accelerates the pre-accelerated ions. Our particle-in-cell (PIC) simulation shows that the SRPA scheme works efficiently with the laser intensity ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.85</mn><mo>×</mo><msup><mn>10</mn><mn>21</mn></msup></mrow></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.38</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup></mrow></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, e.g., a well-collimated quasi-monoenergetic proton beam with peak energy ∼1.2 GeV can be generated by a 2.74 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>22</mn></msup></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> pulse, and the energy conversion efficiency from the laser pulse to the proton beam is about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>16</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The QED effects have slight influence on this SRPA scheme. |
first_indexed | 2024-03-09T13:52:10Z |
format | Article |
id | doaj.art-87ebedaa4c674516bc51fe8eec6c5e4a |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-09T13:52:10Z |
publishDate | 2022-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-87ebedaa4c674516bc51fe8eec6c5e4a2023-11-30T20:49:04ZengMDPI AGApplied Sciences2076-34172022-03-01126292410.3390/app12062924Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure AccelerationMeng Liu0Jia-Xiang Gao1Wei-Min Wang2Yu-Tong Li3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, ChinaBeijing Key Laboratory of Opto-Electronic Functional Materials and Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, ChinaBeijing Key Laboratory of Opto-Electronic Functional Materials and Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, ChinaBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190, ChinaLaser-driven radiation pressure acceleration (RPA) is one of the most promising candidates to achieve quasi-monoenergetic ion beams. In particular, many petawatt systems are under construction or in the planning phase. Here, a stable radiation pressure acceleration (SRPA) scheme is investigated, in which a circularly-polarized (CP) laser pulse illuminates a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>H</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> thin foil followed by a large-scale near-critical-density (NCD) plasma. In the laser-foil interaction, a longitudinal charge-separated electric field is excited to accelerate ions together with the heating of electrons. The heating can be alleviated by the continuous replenishment of cold electrons of the NCD plasma as the laser pulse and the pre-accelerated ions enter into the NCD plasma. With the relativistically transparent propagation of the pulse in the NCD plasma, the accelerating field with large amplitude is persistent, and its propagating speed becomes relatively low, which further accelerates the pre-accelerated ions. Our particle-in-cell (PIC) simulation shows that the SRPA scheme works efficiently with the laser intensity ranging from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>6.85</mn><mo>×</mo><msup><mn>10</mn><mn>21</mn></msup></mrow></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.38</mn><mo>×</mo><msup><mn>10</mn><mn>23</mn></msup></mrow></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula>, e.g., a well-collimated quasi-monoenergetic proton beam with peak energy ∼1.2 GeV can be generated by a 2.74 × <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mn>10</mn><mn>22</mn></msup></semantics></math></inline-formula> W cm<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></semantics></math></inline-formula> pulse, and the energy conversion efficiency from the laser pulse to the proton beam is about <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>16</mn><mo>%</mo></mrow></semantics></math></inline-formula>. The QED effects have slight influence on this SRPA scheme.https://www.mdpi.com/2076-3417/12/6/2924laser driven ion accelerationradiation pressure accelerationnear-critical-density plasma |
spellingShingle | Meng Liu Jia-Xiang Gao Wei-Min Wang Yu-Tong Li Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration Applied Sciences laser driven ion acceleration radiation pressure acceleration near-critical-density plasma |
title | Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration |
title_full | Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration |
title_fullStr | Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration |
title_full_unstemmed | Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration |
title_short | Theoretical Study of the Efficient Ion Acceleration Driven by Petawatt-Class Lasers via Stable Radiation Pressure Acceleration |
title_sort | theoretical study of the efficient ion acceleration driven by petawatt class lasers via stable radiation pressure acceleration |
topic | laser driven ion acceleration radiation pressure acceleration near-critical-density plasma |
url | https://www.mdpi.com/2076-3417/12/6/2924 |
work_keys_str_mv | AT mengliu theoreticalstudyoftheefficientionaccelerationdrivenbypetawattclasslasersviastableradiationpressureacceleration AT jiaxianggao theoreticalstudyoftheefficientionaccelerationdrivenbypetawattclasslasersviastableradiationpressureacceleration AT weiminwang theoreticalstudyoftheefficientionaccelerationdrivenbypetawattclasslasersviastableradiationpressureacceleration AT yutongli theoreticalstudyoftheefficientionaccelerationdrivenbypetawattclasslasersviastableradiationpressureacceleration |