Evaluation of bacterial glycerol dialkyl glycerol tetraether and <sup>2</sup>H–<sup>18</sup>O biomarker proxies along a central European topsoil transect

<p>Molecular fossils, like bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs), and the stable isotopic composition of biomarkers, such as <span class="inline-formula"><i>δ</i><sup>2</sup>H</span> of leaf wax-derived <span class=&...

Full description

Bibliographic Details
Main Authors: J. Hepp, I. K. Schäfer, V. Lanny, J. Franke, M. Bliedtner, K. Rozanski, B. Glaser, M. Zech, T. I. Eglinton, R. Zech
Format: Article
Language:English
Published: Copernicus Publications 2020-02-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/17/741/2020/bg-17-741-2020.pdf
Description
Summary:<p>Molecular fossils, like bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs), and the stable isotopic composition of biomarkers, such as <span class="inline-formula"><i>δ</i><sup>2</sup>H</span> of leaf wax-derived <span class="inline-formula"><i>n</i></span>-alkanes (<span class="inline-formula"><i>δ</i><sup>2</sup>H</span><span class="inline-formula"><sub><i>n</i>-alkane</sub></span>) or <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> of hemicellulose-derived sugars (<span class="inline-formula"><i>δ</i><sup>18</sup>O</span><span class="inline-formula"><sub>sugar</sub></span>), are increasingly used for the reconstruction of past climate and environmental conditions. Plant-derived <span class="inline-formula"><i>δ</i><sup>2</sup>H</span><span class="inline-formula"><sub><i>n</i>-alkane</sub></span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span><span class="inline-formula"><sub>sugar</sub></span> values record the isotopic composition of plant source water (<span class="inline-formula"><i>δ</i><sup>2</sup></span>H<span class="inline-formula"><sub>source-water</sub></span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span><span class="inline-formula"><sub>source-water</sub></span>), which usually reflects mean annual precipitation (<span class="inline-formula"><i>δ</i><sup>2</sup></span>H<span class="inline-formula"><sub>precipiation</sub></span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span><span class="inline-formula"><sub>precipiation</sub></span>), modulated by evapotranspirative leaf water enrichment and biosynthetic fractionation (<span class="inline-formula"><i>ε</i><sub>bio</sub></span>). Accuracy and precision of respective proxies should be ideally evaluated at a regional scale. For this study, we analysed topsoils below coniferous and deciduous forests as well as grassland soils along a central European transect in order to investigate the variability and robustness of various proxies and to identify effects related to vegetation. Soil pH values derived from brGDGTs correlate reasonably well with measured soil pH values but are systematically overestimated (<span class="inline-formula">Δ</span>pH&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula">0.6±0.6</span>). The branched vs. isoprenoid tetraether index (BIT) can give some indication whether the pH reconstruction is reliable. Temperatures derived from brGDGTs overestimate mean annual air temperatures slightly (<span class="inline-formula">Δ<i>T</i><sub>MA</sub>=0.5</span>&thinsp;<span class="inline-formula"><sup>∘</sup></span>C&thinsp;<span class="inline-formula">±</span>&thinsp;2.4). Apparent isotopic fractionation (<span class="inline-formula"><i>ε</i><sub><i>n</i>-alkane/precipitation</sub></span> and <span class="inline-formula"><i>ε</i><sub>sugar∕precipitation</sub></span>) is lower for grassland sites than for forest sites due to signal damping; i.e. grass biomarkers do not record the full evapotranspirative leaf water enrichment. Coupling <span class="inline-formula"><i>δ</i><sup>2</sup>H</span><span class="inline-formula"><sub><i>n</i>-alkane</sub></span> with <span class="inline-formula"><i>δ</i><sup>18</sup>O</span><span class="inline-formula"><sub>sugar</sub></span> allows us to reconstruct the stable isotopic composition of the source water more accurately than without the coupled approach (<span class="inline-formula">Δ<i>δ</i><sup>2</sup>H</span>&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>-</mo><mn mathvariant="normal">21</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="e82a4d8b4a959976b462fc4efa2646e9"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-17-741-2020-ie00001.svg" width="32pt" height="10pt" src="bg-17-741-2020-ie00001.png"/></svg:svg></span></span>&thinsp;‰&thinsp;<span class="inline-formula">±</span>&thinsp;22&thinsp;‰ and <span class="inline-formula">Δ<i>δ</i><sup>18</sup>O</span>&thinsp;<span class="inline-formula">=</span>&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M43" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>-</mo><mn mathvariant="normal">2.9</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="35pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="fa28c201b7bdb30ed9d566e4ac581654"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-17-741-2020-ie00002.svg" width="35pt" height="10pt" src="bg-17-741-2020-ie00002.png"/></svg:svg></span></span>&thinsp;‰&thinsp;<span class="inline-formula">±</span>&thinsp;2.8&thinsp;‰). Similarly, relative humidity during daytime and the vegetation period (RH<span class="inline-formula"><sub>MDV</sub></span>) can be reconstructed using the coupled isotope approach (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M46" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msub><mi mathvariant="normal">RH</mi><mi mathvariant="normal">MDV</mi></msub><mo>=</mo><mo>∼</mo><mo>-</mo><mn mathvariant="normal">17</mn><mo>±</mo><mn mathvariant="normal">12</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="107pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="d823af5a8ee2834d6d10a3ec7bc50932"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-17-741-2020-ie00003.svg" width="107pt" height="12pt" src="bg-17-741-2020-ie00003.png"/></svg:svg></span></span>). Especially for coniferous sites, reconstructed RH<span class="inline-formula"><sub>MDV</sub></span> values as well as source water isotope composition underestimate the measured values. This can likely be explained by understorey grass vegetation at the coniferous sites contributing significantly to the <span class="inline-formula"><i>n</i></span>-alkane pool but only marginally to the sugar pool in the topsoils. Vegetation-dependent variable signal damping and <span class="inline-formula"><i>ε</i><sub>bio</sub></span> (regarding <span class="inline-formula"><sup>2</sup>H</span> between <span class="inline-formula"><i>n</i></span>-alkanes and leaf water) along our European transect are difficult to quantify but likely contribute to the observed underestimation in the source water isotope composition and RH reconstructions. Microclimate variability could cause the rather large uncertainties. Vegetation-related effects do, by contrast, not affect the brGDGT-derived reconstructions. Overall, GDGTs and the coupled <span class="inline-formula"><i>δ</i><sup>2</sup>H</span><span class="inline-formula"><sub><i>n</i>-alkane</sub></span>–<span class="inline-formula"><i>δ</i><sup>18</sup>O</span><span class="inline-formula"><sub>sugar</sub></span> approach have great potential for more quantitative paleoclimate reconstructions.</p>
ISSN:1726-4170
1726-4189