Theoretical Stiffness Modeling and Application Research of a Novel Stacked Flexure Hinge

This study investigates and designs a novel stacked hinge with low stiffness, large rotation angle, high strength, and length-adaptive functionality. Firstly, based on the large deformation theory of cantilever beams and relevant theories of leaf springs, a stiffness theoretical model for stacked fl...

Full description

Bibliographic Details
Main Authors: Yonghong Zhang, Chengmin Wang, Shuangquan Tang, You Jiang, Hong Chen, Wenjie Ge
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Aerospace
Subjects:
Online Access:https://www.mdpi.com/2226-4310/10/7/636
Description
Summary:This study investigates and designs a novel stacked hinge with low stiffness, large rotation angle, high strength, and length-adaptive functionality. Firstly, based on the large deformation theory of cantilever beams and relevant theories of leaf springs, a stiffness theoretical model for stacked flexure hinges is established. Subsequently, the stiffness theoretical model is further modified by considering the frictional force, aiming to reduce errors. Secondly, a stiffness-testing experimental platform for this flexure hinge is designed to verify the correctness of the theoretical model. Finally, the stacked flexure hinge is applied to the trailing-edge mechanism of a variable camber wing, achieving a deformation target of 15° downward bending of the wing and demonstrating good shape retention, thereby proving the feasibility of the application.
ISSN:2226-4310