Quasi-inner product spaces of quasi-Sobolev spaces and their completeness

      Sequences spaces  , m  ,  p  have called quasi-Sobolev spaces were  introduced   by Jawad . K. Al-Delfi in 2013  [1]. In this  paper , we deal with notion of  quasi-inner product  space  by using concept of  quasi-normed  space which is generalized  to normed space and given a  relationship ...

Full description

Bibliographic Details
Main Author: Jawad Kadhim Khalaf Al-Delfi
Format: Article
Language:English
Published: University of Baghdad 2018-04-01
Series:Ibn Al-Haitham Journal for Pure and Applied Sciences
Subjects:
Online Access:https://jih.uobaghdad.edu.iq/index.php/j/article/view/1806
Description
Summary:      Sequences spaces  , m  ,  p  have called quasi-Sobolev spaces were  introduced   by Jawad . K. Al-Delfi in 2013  [1]. In this  paper , we deal with notion of  quasi-inner product  space  by using concept of  quasi-normed  space which is generalized  to normed space and given a  relationship  between  pre-Hilbert space and a  quasi-inner product space with important  results   and   examples.  Completeness properties in quasi-inner   product space gives  us  concept of  quasi-Hilbert space .  We show  that ,  not  all  quasi-Sobolev spaces  ,  are  quasi-Hilbert spaces. The  best  examples which are  quasi-Hilbert spaces and Hilbert spaces  are , where  m  . Finally, propositions, theorems and examples are our own unless otherwise referred.    
ISSN:1609-4042
2521-3407