Forecast of Stability of the Economy of the Russian Federation with the AI-System “Decision Tree” in a Cognitive Model

Increased use of modern mathematical algorithms based on artificial intelligence determined the relevance of this study, which is important for predicting the sustainable development of the country's economy in general and its banking sector in particular. To achieve the purpose of the rese...

Full description

Bibliographic Details
Main Authors: Nikolay Lomakin, Anastasia Kulachinskaya, Vera Tsygankova, Ekaterina Kosobokova, Oksana Minaeva, Valentina Trunina
Format: Article
Language:English
Published: Universitas Indonesia 2023-12-01
Series:International Journal of Technology
Subjects:
Online Access:https://ijtech.eng.ui.ac.id/article/view/6848
Description
Summary:Increased use of modern mathematical algorithms based on artificial intelligence determined the relevance of this study, which is important for predicting the sustainable development of the country's economy in general and its banking sector in particular. To achieve the purpose of the research, the presented work used methods such as monographic, analytical, statistical, cognitive model, and artificial intelligence system "Random Forest". The aim of the study is to prove or disprove the hypothesis that, using a cognitive model, using the Random Forest ML model, it is possible to obtain an accurate forecast of the value of the "sustainability coefficient", reflecting the stability of the domestic economy. The scientific novelty of the study is due to the fact that the author's approach is proposed for indicating the crisis state of the economy through the calculation and neural network forecasting by the machine learning model "Random Forest" of the "Stability Coefficient" of the economy, which is calculated as the quotient of dividing the profit index of the banking system to the GDP growth index. The possibility of practical application in the banking sector determines the practical significance of the conducted scientific research since the approach proposed by the authors regarding the formation of a forecast of the “sustainability coefficient” can be successfully used to support managerial decision-making at the strategic level in the banking system. A hypothesis was put forward and proven that based on the use of a digital cognitive model and the Random Forest ML system, a forecast of economic stability can be successfully generated.
ISSN:2086-9614
2087-2100