MiR-590-3p affects the function of adipose-derived stem cells (ADSCs) on the survival of skin flaps by targeting VEGFA

Introduction: Partial necrosis of skin flaps is still a substantial problem in plastic and reconstructive surgery. In this study, the role of miR-590-3p in adipose-derived stem cells (ADSCs) transplantation in improving the survival of skin flap in a mouse model was delved into. Method: An abdominal...

Full description

Bibliographic Details
Main Authors: Kai Yang, Xiancheng Wang, Yang Sun, Xiang Xiong, Xianxi Meng, Bairong Fang, Wenbo Li, Zhongjie Yi
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:Regenerative Therapy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352320422000724
Description
Summary:Introduction: Partial necrosis of skin flaps is still a substantial problem in plastic and reconstructive surgery. In this study, the role of miR-590-3p in adipose-derived stem cells (ADSCs) transplantation in improving the survival of skin flap in a mouse model was delved into. Method: An abdominal perforator flap model was established in mice. The histopathological examination of mice skin tissues after ADSCs transplantation was implemented using Hematoxylin & eosin (H&E) staining. Immunohistochemistry (IHC) or immunofluorescence (IF) staining was utilized to assess the PCNA or CD31 levels. The concentrations of VEGFA in the culture medium were quantified using a VEGFA ELISA kit. Result: The damage of tissue in the skin flap was dramatically relieved by ADSCs transplantation. MiR-590-3p overexpression notably suppressed, while miR-590-3p knockdown facilitated skin flap survival by regulating PCNA, VCAM-1, and VEGFA levels. MiR-590-3p targeted VEGFA to regulate its expression. The knockdown of VEGFA significantly inhibited, while overexpression of VEGFA notably promoted the survival of skin flap. Conclusion: ADSCs transplantation promotes skin flap survival by boosting angiogenesis. The miR-590-3p/VEGFA axis modulates skin flap angiogenesis and survival in ADSCs. These results reveal that interfering with miR-590-3p in ADSCs could potentially be a novel therapeutic target for the improvement of skin flap survival.
ISSN:2352-3204