Unique localization of faults in distribution systems by means of zones with SVM

This paper presents a new methodology for localizing faults in distribution systems by means of an artificial intelligence technique –Support Vector Machine– (SVM). This methodology divides the electrical system into different zones order to pinpoint the region where the fault exists with accuracy....

Full description

Bibliographic Details
Main Authors: Germán Morales-España, Hermann Raúl Vargas-Torres, René Barrera-Cárdenas
Format: Article
Language:English
Published: Universidad de Antioquia 2013-12-01
Series:Revista Facultad de Ingeniería Universidad de Antioquia
Subjects:
Online Access:https://revistas.udea.edu.co/index.php/ingenieria/article/view/17765
_version_ 1797861700186144768
author Germán Morales-España
Hermann Raúl Vargas-Torres
René Barrera-Cárdenas
author_facet Germán Morales-España
Hermann Raúl Vargas-Torres
René Barrera-Cárdenas
author_sort Germán Morales-España
collection DOAJ
description This paper presents a new methodology for localizing faults in distribution systems by means of an artificial intelligence technique –Support Vector Machine– (SVM). This methodology divides the electrical system into different zones order to pinpoint the region where the fault exists with accuracy. The advantage over classical distance methods is the unique estimation of the fault’s locus in branches systems. An example using a real system model shows that the proposed methodology is highly effective finding the fault localization. In such example load changes of ±40 % from nominal load are considered.
first_indexed 2024-04-09T22:08:25Z
format Article
id doaj.art-88762b345a2b4056be698be23d9f5ed5
institution Directory Open Access Journal
issn 0120-6230
2422-2844
language English
last_indexed 2024-04-09T22:08:25Z
publishDate 2013-12-01
publisher Universidad de Antioquia
record_format Article
series Revista Facultad de Ingeniería Universidad de Antioquia
spelling doaj.art-88762b345a2b4056be698be23d9f5ed52023-03-23T12:33:54ZengUniversidad de AntioquiaRevista Facultad de Ingeniería Universidad de Antioquia0120-62302422-28442013-12-014710.17533/udea.redin.17765Unique localization of faults in distribution systems by means of zones with SVMGermán Morales-España0Hermann Raúl Vargas-Torres1René Barrera-Cárdenas2Universidad Industrial de SantanderUniversidad Industrial de SantanderUniversidad Industrial de Santander This paper presents a new methodology for localizing faults in distribution systems by means of an artificial intelligence technique –Support Vector Machine– (SVM). This methodology divides the electrical system into different zones order to pinpoint the region where the fault exists with accuracy. The advantage over classical distance methods is the unique estimation of the fault’s locus in branches systems. An example using a real system model shows that the proposed methodology is highly effective finding the fault localization. In such example load changes of ±40 % from nominal load are considered. https://revistas.udea.edu.co/index.php/ingenieria/article/view/17765Descriptorsartificial intelligencefault’s localizationmultiple estimationdistribution systemsSVM
spellingShingle Germán Morales-España
Hermann Raúl Vargas-Torres
René Barrera-Cárdenas
Unique localization of faults in distribution systems by means of zones with SVM
Revista Facultad de Ingeniería Universidad de Antioquia
Descriptors
artificial intelligence
fault’s localization
multiple estimation
distribution systems
SVM
title Unique localization of faults in distribution systems by means of zones with SVM
title_full Unique localization of faults in distribution systems by means of zones with SVM
title_fullStr Unique localization of faults in distribution systems by means of zones with SVM
title_full_unstemmed Unique localization of faults in distribution systems by means of zones with SVM
title_short Unique localization of faults in distribution systems by means of zones with SVM
title_sort unique localization of faults in distribution systems by means of zones with svm
topic Descriptors
artificial intelligence
fault’s localization
multiple estimation
distribution systems
SVM
url https://revistas.udea.edu.co/index.php/ingenieria/article/view/17765
work_keys_str_mv AT germanmoralesespana uniquelocalizationoffaultsindistributionsystemsbymeansofzoneswithsvm
AT hermannraulvargastorres uniquelocalizationoffaultsindistributionsystemsbymeansofzoneswithsvm
AT renebarreracardenas uniquelocalizationoffaultsindistributionsystemsbymeansofzoneswithsvm