Latitudinal wind power resource assessment along coastal areas of Tamil Nadu, India

Globally, the wind power capacities are growing every passing year, which is an indicative of social and commercial acceptance of this technology by a larger section of the populations. In Indian perspective, the wind power capacities are also increasing with annual additions of new capacities and m...

Full description

Bibliographic Details
Main Authors: Rehman S., Natarajan N., Mohandes Mohd A., Alam Mahbub
Format: Article
Language:English
Published: University of Belgrade - Faculty of Mechanical Engineering, Belgrade 2020-01-01
Series:FME Transactions
Subjects:
Online Access:https://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2020/1451-20922003566R.pdf
Description
Summary:Globally, the wind power capacities are growing every passing year, which is an indicative of social and commercial acceptance of this technology by a larger section of the populations. In Indian perspective, the wind power capacities are also increasing with annual additions of new capacities and most of the development work is taking place in the southern part and that too in Tamil Nadu state. Research work in the area of accurate wind power assessment is being conducted to optimize the utilization of wind power and at the same time efforts are being exerted to enhance the operation and maintenance capabilities of the local skilled and semi-skilled work force. This study utilizes 38 years of hourly mean wind speed data from seven locations for providing the accurate wind power assessment and understanding the longitudinal behavior of its characteristics. The wind speed is found to be increasing with decreasing latitudes and having lesser variation in wind direction fluctuations, simply means conversing wind direction to narrower bands. Kanyakumari is identified as the most probable wind power deployment site with annual energy yield of 227.55 MWh and capacity factor of 34% followed by Vedaranyam, and Thoothukudi, as second and third priority sites with respective annual yields of 223.36 MWh and 218.73 MWh.
ISSN:1451-2092
2406-128X