Global well-posedness for KdV in Sobolev spaces of negative index

The initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in $H^s(mathbb{R})$ for $-3/10<s$.

Bibliographic Details
Main Authors: James Colliander, M. Keel, Gigliola Staffilani, Hideo Takaoka, T. Tao
Format: Article
Language:English
Published: Texas State University 2001-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2001/26/abstr.html
_version_ 1818757073401282560
author James Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
T. Tao
author_facet James Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
T. Tao
author_sort James Colliander
collection DOAJ
description The initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in $H^s(mathbb{R})$ for $-3/10<s$.
first_indexed 2024-12-18T06:05:08Z
format Article
id doaj.art-88a4613f7964440a9edb37812e51688a
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-18T06:05:08Z
publishDate 2001-04-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-88a4613f7964440a9edb37812e51688a2022-12-21T21:18:34ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912001-04-0120012617Global well-posedness for KdV in Sobolev spaces of negative indexJames CollianderM. KeelGigliola StaffilaniHideo TakaokaT. TaoThe initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in $H^s(mathbb{R})$ for $-3/10<s$.http://ejde.math.txstate.edu/Volumes/2001/26/abstr.htmlKorteweg-de Vries equationnonlinear dispersive equationsbilinear estimates.
spellingShingle James Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
T. Tao
Global well-posedness for KdV in Sobolev spaces of negative index
Electronic Journal of Differential Equations
Korteweg-de Vries equation
nonlinear dispersive equations
bilinear estimates.
title Global well-posedness for KdV in Sobolev spaces of negative index
title_full Global well-posedness for KdV in Sobolev spaces of negative index
title_fullStr Global well-posedness for KdV in Sobolev spaces of negative index
title_full_unstemmed Global well-posedness for KdV in Sobolev spaces of negative index
title_short Global well-posedness for KdV in Sobolev spaces of negative index
title_sort global well posedness for kdv in sobolev spaces of negative index
topic Korteweg-de Vries equation
nonlinear dispersive equations
bilinear estimates.
url http://ejde.math.txstate.edu/Volumes/2001/26/abstr.html
work_keys_str_mv AT jamescolliander globalwellposednessforkdvinsobolevspacesofnegativeindex
AT mkeel globalwellposednessforkdvinsobolevspacesofnegativeindex
AT gigliolastaffilani globalwellposednessforkdvinsobolevspacesofnegativeindex
AT hideotakaoka globalwellposednessforkdvinsobolevspacesofnegativeindex
AT ttao globalwellposednessforkdvinsobolevspacesofnegativeindex