Global well-posedness for KdV in Sobolev spaces of negative index
The initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in $H^s(mathbb{R})$ for $-3/10<s$.
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2001-04-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2001/26/abstr.html |
_version_ | 1818757073401282560 |
---|---|
author | James Colliander M. Keel Gigliola Staffilani Hideo Takaoka T. Tao |
author_facet | James Colliander M. Keel Gigliola Staffilani Hideo Takaoka T. Tao |
author_sort | James Colliander |
collection | DOAJ |
description | The initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in $H^s(mathbb{R})$ for $-3/10<s$. |
first_indexed | 2024-12-18T06:05:08Z |
format | Article |
id | doaj.art-88a4613f7964440a9edb37812e51688a |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-12-18T06:05:08Z |
publishDate | 2001-04-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-88a4613f7964440a9edb37812e51688a2022-12-21T21:18:34ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912001-04-0120012617Global well-posedness for KdV in Sobolev spaces of negative indexJames CollianderM. KeelGigliola StaffilaniHideo TakaokaT. TaoThe initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in $H^s(mathbb{R})$ for $-3/10<s$.http://ejde.math.txstate.edu/Volumes/2001/26/abstr.htmlKorteweg-de Vries equationnonlinear dispersive equationsbilinear estimates. |
spellingShingle | James Colliander M. Keel Gigliola Staffilani Hideo Takaoka T. Tao Global well-posedness for KdV in Sobolev spaces of negative index Electronic Journal of Differential Equations Korteweg-de Vries equation nonlinear dispersive equations bilinear estimates. |
title | Global well-posedness for KdV in Sobolev spaces of negative index |
title_full | Global well-posedness for KdV in Sobolev spaces of negative index |
title_fullStr | Global well-posedness for KdV in Sobolev spaces of negative index |
title_full_unstemmed | Global well-posedness for KdV in Sobolev spaces of negative index |
title_short | Global well-posedness for KdV in Sobolev spaces of negative index |
title_sort | global well posedness for kdv in sobolev spaces of negative index |
topic | Korteweg-de Vries equation nonlinear dispersive equations bilinear estimates. |
url | http://ejde.math.txstate.edu/Volumes/2001/26/abstr.html |
work_keys_str_mv | AT jamescolliander globalwellposednessforkdvinsobolevspacesofnegativeindex AT mkeel globalwellposednessforkdvinsobolevspacesofnegativeindex AT gigliolastaffilani globalwellposednessforkdvinsobolevspacesofnegativeindex AT hideotakaoka globalwellposednessforkdvinsobolevspacesofnegativeindex AT ttao globalwellposednessforkdvinsobolevspacesofnegativeindex |