Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>)

<p>Abstract</p> <p>Background</p> <p>Identification of genes involved in adaptation and speciation by targeting specific genes of interest has become a plausible strategy also for non-model organisms. We investigated the potential utility of available sequenced fish gen...

Full description

Bibliographic Details
Main Authors: Shimada Yukinori, Ramadevi Jetty, Shikano Takahito, Merilä Juha
Format: Article
Language:English
Published: BMC 2010-05-01
Series:BMC Genomics
Online Access:http://www.biomedcentral.com/1471-2164/11/334
_version_ 1811259912848670720
author Shimada Yukinori
Ramadevi Jetty
Shikano Takahito
Merilä Juha
author_facet Shimada Yukinori
Ramadevi Jetty
Shikano Takahito
Merilä Juha
author_sort Shimada Yukinori
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>Identification of genes involved in adaptation and speciation by targeting specific genes of interest has become a plausible strategy also for non-model organisms. We investigated the potential utility of available sequenced fish genomes to develop microsatellite (cf. simple sequence repeat, SSR) markers for functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>), as well as cross-species transferability of SSR primers from three-spined (<it>Gasterosteus aculeatus</it>) to nine-spined sticklebacks. In addition, we examined the patterns and degree of SSR conservation between these species using their aligned sequences.</p> <p>Results</p> <p>Cross-species amplification success was lower for SSR markers located in or around functionally important genes (27 out of 158) than for those randomly derived from genomic (35 out of 101) and cDNA (35 out of 87) libraries. Polymorphism was observed at a large proportion (65%) of the cross-amplified loci independently of SSR type. To develop SSR markers for functionally important genes in nine-spined sticklebacks, SSR locations were surveyed in or around 67 target genes based on the three-spined stickleback genome and these regions were sequenced with primers designed from conserved sequences in sequenced fish genomes. Out of the 81 SSRs identified in the sequenced regions (44,084 bp), 57 exhibited the same motifs at the same locations as in the three-spined stickleback. Di- and trinucleotide SSRs appeared to be highly conserved whereas mononucleotide SSRs were less so. Species-specific primers were designed to amplify 58 SSRs using the sequences of nine-spined sticklebacks.</p> <p>Conclusions</p> <p>Our results demonstrated that a large proportion of SSRs are conserved in the species that have diverged more than 10 million years ago. Therefore, the three-spined stickleback genome can be used to predict SSR locations in the nine-spined stickleback genome. While cross-species utility of SSR primers is limited due to low amplification success, SSR markers can be developed for target genes and genomic regions using our approach, which should be also applicable to other non-model organisms. The SSR markers developed in this study should be useful for identification of genes responsible for phenotypic variation and adaptive divergence of nine-spined stickleback populations, as well as for constructing comparative gene maps of nine-spined and three-spined sticklebacks.</p>
first_indexed 2024-04-12T18:39:49Z
format Article
id doaj.art-88a535e364a04e15bfbe24c3120fe59c
institution Directory Open Access Journal
issn 1471-2164
language English
last_indexed 2024-04-12T18:39:49Z
publishDate 2010-05-01
publisher BMC
record_format Article
series BMC Genomics
spelling doaj.art-88a535e364a04e15bfbe24c3120fe59c2022-12-22T03:20:50ZengBMCBMC Genomics1471-21642010-05-0111133410.1186/1471-2164-11-334Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>)Shimada YukinoriRamadevi JettyShikano TakahitoMerilä Juha<p>Abstract</p> <p>Background</p> <p>Identification of genes involved in adaptation and speciation by targeting specific genes of interest has become a plausible strategy also for non-model organisms. We investigated the potential utility of available sequenced fish genomes to develop microsatellite (cf. simple sequence repeat, SSR) markers for functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>), as well as cross-species transferability of SSR primers from three-spined (<it>Gasterosteus aculeatus</it>) to nine-spined sticklebacks. In addition, we examined the patterns and degree of SSR conservation between these species using their aligned sequences.</p> <p>Results</p> <p>Cross-species amplification success was lower for SSR markers located in or around functionally important genes (27 out of 158) than for those randomly derived from genomic (35 out of 101) and cDNA (35 out of 87) libraries. Polymorphism was observed at a large proportion (65%) of the cross-amplified loci independently of SSR type. To develop SSR markers for functionally important genes in nine-spined sticklebacks, SSR locations were surveyed in or around 67 target genes based on the three-spined stickleback genome and these regions were sequenced with primers designed from conserved sequences in sequenced fish genomes. Out of the 81 SSRs identified in the sequenced regions (44,084 bp), 57 exhibited the same motifs at the same locations as in the three-spined stickleback. Di- and trinucleotide SSRs appeared to be highly conserved whereas mononucleotide SSRs were less so. Species-specific primers were designed to amplify 58 SSRs using the sequences of nine-spined sticklebacks.</p> <p>Conclusions</p> <p>Our results demonstrated that a large proportion of SSRs are conserved in the species that have diverged more than 10 million years ago. Therefore, the three-spined stickleback genome can be used to predict SSR locations in the nine-spined stickleback genome. While cross-species utility of SSR primers is limited due to low amplification success, SSR markers can be developed for target genes and genomic regions using our approach, which should be also applicable to other non-model organisms. The SSR markers developed in this study should be useful for identification of genes responsible for phenotypic variation and adaptive divergence of nine-spined stickleback populations, as well as for constructing comparative gene maps of nine-spined and three-spined sticklebacks.</p>http://www.biomedcentral.com/1471-2164/11/334
spellingShingle Shimada Yukinori
Ramadevi Jetty
Shikano Takahito
Merilä Juha
Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>)
BMC Genomics
title Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>)
title_full Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>)
title_fullStr Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>)
title_full_unstemmed Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>)
title_short Utility of sequenced genomes for microsatellite marker development in non-model organisms: a case study of functionally important genes in nine-spined sticklebacks (<it>Pungitius pungitius</it>)
title_sort utility of sequenced genomes for microsatellite marker development in non model organisms a case study of functionally important genes in nine spined sticklebacks it pungitius pungitius it
url http://www.biomedcentral.com/1471-2164/11/334
work_keys_str_mv AT shimadayukinori utilityofsequencedgenomesformicrosatellitemarkerdevelopmentinnonmodelorganismsacasestudyoffunctionallyimportantgenesinninespinedsticklebacksitpungitiuspungitiusit
AT ramadevijetty utilityofsequencedgenomesformicrosatellitemarkerdevelopmentinnonmodelorganismsacasestudyoffunctionallyimportantgenesinninespinedsticklebacksitpungitiuspungitiusit
AT shikanotakahito utilityofsequencedgenomesformicrosatellitemarkerdevelopmentinnonmodelorganismsacasestudyoffunctionallyimportantgenesinninespinedsticklebacksitpungitiuspungitiusit
AT merilajuha utilityofsequencedgenomesformicrosatellitemarkerdevelopmentinnonmodelorganismsacasestudyoffunctionallyimportantgenesinninespinedsticklebacksitpungitiuspungitiusit