An Interpretable Deep Learning Classifier for Epileptic Seizure Prediction Using EEG Data
Deep learning has served pattern classification in many applications, with a performance which often well exceeds that of other machine learning paradigms. Yet, in general, deep learning has used computational architectures built, albeit partially, by ad hoc means, and its classification decisions a...
Główni autorzy: | Imene Jemal, Neila Mezghani, Lina Abou-Abbas, Amar Mitiche |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
IEEE
2022-01-01
|
Seria: | IEEE Access |
Hasła przedmiotowe: | |
Dostęp online: | https://ieeexplore.ieee.org/document/9777979/ |
Podobne zapisy
-
Domain adaptation for EEG-based, cross-subject epileptic seizure prediction
od: Imene Jemal, i wsp.
Wydane: (2024-02-01) -
EEG Oscillatory Power and Complexity for Epileptic Seizure Detection
od: Lina Abou-Abbas, i wsp.
Wydane: (2022-04-01) -
A Study of EEG Feature Complexity in Epileptic Seizure Prediction
od: Imene Jemal, i wsp.
Wydane: (2021-02-01) -
Generative AI with WGAN-GP for boosting seizure detection accuracy
od: Lina Abou-Abbas, i wsp.
Wydane: (2024-10-01) -
Serum prolactin for differentiating epileptic seizures in children
od: Harry Mangunsong
Wydane: (2015-10-01)