Summary: | The truncated exponential polynomials <inline-formula><math display="inline"><semantics><mrow><msub><mi mathvariant="bold">e</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (1), their extensions, and certain newly-introduced polynomials which combine the truncated exponential polynomials with other known polynomials have been investigated and applied in various ways. In this paper, by incorporating the Appell-type Changhee polynomials <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="script">C</mi><msubsup><mi>h</mi><mi>n</mi><mo>*</mo></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (10) and the truncated exponential polynomials in a natural way, we aim to introduce so-called truncated-exponential-based Appell-type Changhee polynomials <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>e</mi></msub><msubsup><mi mathvariant="script">C</mi><mi>n</mi><mo>*</mo></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in Definition 1. Then, we investigate certain properties and identities for these new polynomials such as explicit representation, addition formulas, recurrence relations, differential and integral formulas, and some related inequalities. We also present some integral inequalities involving these polynomials <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>e</mi></msub><msubsup><mi mathvariant="script">C</mi><mi>n</mi><mo>*</mo></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Further we discuss zero distributions of these polynomials by observing their graphs drawn by Mathematica. Lastly some open questions are suggested.
|