The Local Antimagic Total Chromatic Number of Some Wheel-Related Graphs

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo>...

Full description

Bibliographic Details
Main Authors: Xue Yang, Hong Bian, Haizheng Yu, Dandan Liu
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/3/97
_version_ 1827649892165615616
author Xue Yang
Hong Bian
Haizheng Yu
Dandan Liu
author_facet Xue Yang
Hong Bian
Haizheng Yu
Dandan Liu
author_sort Xue Yang
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a connected graph with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>V</mi><mo>|</mo><mo>=</mo><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>E</mi><mo>|</mo><mo>=</mo><mi>m</mi></mrow></semantics></math></inline-formula>. A bijection <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>∪</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>}</mo></mrow></semantics></math></inline-formula> is called local antimagic total labeling if, for any two adjacent vertices <i>u</i> and <i>v</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><msub><mi>ω</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><msub><mo>∑</mo><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the set of edges incident to <i>u</i>. Thus, any local antimagic total labeling induces a proper coloring of <i>G</i>, where the vertex <i>x</i> in <i>G</i> is assigned the color <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The local antimagic total chromatic number, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>χ</mi><mrow><mi>l</mi><mi>a</mi><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is the minimum number of colors taken over all colorings induced by local antimagic total labelings of <i>G</i>. In this paper, we present the local antimagic total chromatic numbers of some wheel-related graphs, such as the fan graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>n</mi></msub></semantics></math></inline-formula>, the bowknot graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>B</mi><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></semantics></math></inline-formula>, the Dutch windmill graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>D</mi><mrow><mn>4</mn></mrow><mi>n</mi></msubsup></semantics></math></inline-formula>, the analogous Dutch graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><msubsup><mi>D</mi><mrow><mn>4</mn></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula> and the flower graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">F</mi><mi>n</mi></msub></semantics></math></inline-formula>.
first_indexed 2024-03-09T20:06:51Z
format Article
id doaj.art-88d111ed77304f8eaa9e1bb4cb1b6c5f
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T20:06:51Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-88d111ed77304f8eaa9e1bb4cb1b6c5f2023-11-24T00:28:46ZengMDPI AGAxioms2075-16802022-02-011139710.3390/axioms11030097The Local Antimagic Total Chromatic Number of Some Wheel-Related GraphsXue Yang0Hong Bian1Haizheng Yu2Dandan Liu3School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830017, ChinaSchool of Mathematical Sciences, Xinjiang Normal University, Urumqi 830017, ChinaCollege of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, ChinaSchool of Mathematical Sciences, Xinjiang Normal University, Urumqi 830017, ChinaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> be a connected graph with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>V</mi><mo>|</mo><mo>=</mo><mi>n</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>E</mi><mo>|</mo><mo>=</mo><mi>m</mi></mrow></semantics></math></inline-formula>. A bijection <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>∪</mo><mi>E</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>⋯</mo><mo>,</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>}</mo></mrow></semantics></math></inline-formula> is called local antimagic total labeling if, for any two adjacent vertices <i>u</i> and <i>v</i>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><msub><mi>ω</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><msub><mo>∑</mo><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mo>(</mo><mi>u</mi><mo>)</mo></mrow></semantics></math></inline-formula> is the set of edges incident to <i>u</i>. Thus, any local antimagic total labeling induces a proper coloring of <i>G</i>, where the vertex <i>x</i> in <i>G</i> is assigned the color <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>t</mi></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The local antimagic total chromatic number, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>χ</mi><mrow><mi>l</mi><mi>a</mi><mi>t</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is the minimum number of colors taken over all colorings induced by local antimagic total labelings of <i>G</i>. In this paper, we present the local antimagic total chromatic numbers of some wheel-related graphs, such as the fan graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>F</mi><mi>n</mi></msub></semantics></math></inline-formula>, the bowknot graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>B</mi><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></semantics></math></inline-formula>, the Dutch windmill graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>D</mi><mrow><mn>4</mn></mrow><mi>n</mi></msubsup></semantics></math></inline-formula>, the analogous Dutch graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><msubsup><mi>D</mi><mrow><mn>4</mn></mrow><mi>n</mi></msubsup></mrow></semantics></math></inline-formula> and the flower graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi mathvariant="script">F</mi><mi>n</mi></msub></semantics></math></inline-formula>.https://www.mdpi.com/2075-1680/11/3/97local antimagic total labelinglocal antimagic total chromatic numberwheel-related graphs
spellingShingle Xue Yang
Hong Bian
Haizheng Yu
Dandan Liu
The Local Antimagic Total Chromatic Number of Some Wheel-Related Graphs
Axioms
local antimagic total labeling
local antimagic total chromatic number
wheel-related graphs
title The Local Antimagic Total Chromatic Number of Some Wheel-Related Graphs
title_full The Local Antimagic Total Chromatic Number of Some Wheel-Related Graphs
title_fullStr The Local Antimagic Total Chromatic Number of Some Wheel-Related Graphs
title_full_unstemmed The Local Antimagic Total Chromatic Number of Some Wheel-Related Graphs
title_short The Local Antimagic Total Chromatic Number of Some Wheel-Related Graphs
title_sort local antimagic total chromatic number of some wheel related graphs
topic local antimagic total labeling
local antimagic total chromatic number
wheel-related graphs
url https://www.mdpi.com/2075-1680/11/3/97
work_keys_str_mv AT xueyang thelocalantimagictotalchromaticnumberofsomewheelrelatedgraphs
AT hongbian thelocalantimagictotalchromaticnumberofsomewheelrelatedgraphs
AT haizhengyu thelocalantimagictotalchromaticnumberofsomewheelrelatedgraphs
AT dandanliu thelocalantimagictotalchromaticnumberofsomewheelrelatedgraphs
AT xueyang localantimagictotalchromaticnumberofsomewheelrelatedgraphs
AT hongbian localantimagictotalchromaticnumberofsomewheelrelatedgraphs
AT haizhengyu localantimagictotalchromaticnumberofsomewheelrelatedgraphs
AT dandanliu localantimagictotalchromaticnumberofsomewheelrelatedgraphs