Attributing the driving mechanisms of the 2015–2017 drought in the Western Cape (South Africa) using self-organising maps

The Southwestern Cape (SWC) region in South Africa experienced a severe rainfall deficit between 2015–2017. The resulting drought caused the City of Cape Town to almost run out of water during the summer of 2017–2018. Using the self-organising maps approach, we identify and classify the synoptic cir...

Full description

Bibliographic Details
Main Authors: Romaric C Odoulami, Piotr Wolski, Mark New
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:Environmental Research Letters
Subjects:
Online Access:https://doi.org/10.1088/1748-9326/ace26f
Description
Summary:The Southwestern Cape (SWC) region in South Africa experienced a severe rainfall deficit between 2015–2017. The resulting drought caused the City of Cape Town to almost run out of water during the summer of 2017–2018. Using the self-organising maps approach, we identify and classify the synoptic circulation states over Southern Africa known to influence the local climate in the SWC into three groups (dry, intermediate, and wet circulation types) using large ensembles of climate model simulations with anthropogenic forcing and natural forcing. We then assessed the influence of anthropogenic climate change on the likelihood of these circulation types and associated rainfall amounts over the SWC during the drought. Our findings suggest that during the drought, the frequency of dry (wet) circulation types increases (decreases) across all models under anthropogenic forcing relative to the natural forcing. While there was no clear direction in the associated rainfall change in the dry circulation types, rainfall decreased across most models in wet nodes. All models agree that anthropogenic climate change has increased the likelihood of dry circulation types (median probability ratio (PR): 0.93–0.96) and decreased that of wet circulation types (median PR: 1.01 and 1.12), indicating a shift towards lesser (more) wet (dry) synoptic circulation states and associated rainfall during the drought. The long-term climatology also depicts similar patterns indicating the drought may result from long-term changes in the frequency of wet circulations and their associated rainfall. This study further explains the anthropogenic influence on the dynamic (synoptic circulation states) and thermodynamic (rainfall) factors that influenced the SWC 2015–2017 drought.
ISSN:1748-9326