The Response of Nanobeams with Temperature-Dependent Properties Using State-Space Method via Modified Couple Stress Theory

At present, with the development in nanotechnology, nanostructures with temperature-dependent properties have been used in nano-electromechanical systems (NEMS). Thus, introducing an accurate mathematical model of nanobeams with temperature-dependent properties is a major and important topic for the...

Full description

Bibliographic Details
Main Authors: Ahmed E. Abouelregal, Marin Marin
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/8/1276
Description
Summary:At present, with the development in nanotechnology, nanostructures with temperature-dependent properties have been used in nano-electromechanical systems (NEMS). Thus, introducing an accurate mathematical model of nanobeams with temperature-dependent properties is a major and important topic for the design of NEMS. This paper aims to discuss nonlocal nanobeams analysis depending on the theories of Euler–Bernoulli and modified couple-stress (MCS). It also is assumed that the thermal conductivity of the nanobeam is dependent on the temperature. Physical fields of the nanobeam are obtained utilizing Laplace transform and state-space techniques. The effects of the size and nonlocal parameters, variability of thermal conductivity and couple stress on various distributions are presented graphically and studied in detail. Numerical results are presented as application scales and the design of nanoparticles, nanoscale oscillators, atomic force microscopes, and nanogenerators, in which nanoparticles as nanobeams act as essential and basic elements.
ISSN:2073-8994