Application and Comparison of Deep Learning Methods to Detect Night-Time Road Surface Conditions for Autonomous Vehicles

Currently, road surface conditions ahead of autonomous vehicles are not well detected by the existing sensors on those autonomous vehicles. However, driving safety should be ensured for the weather-induced road conditions for day and night. An investigation into deep learning to recognize the road s...

Full description

Bibliographic Details
Main Authors: Hongyi Zhang, Rabia Sehab, Sheherazade Azouigui, Moussa Boukhnifer
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/11/5/786
Description
Summary:Currently, road surface conditions ahead of autonomous vehicles are not well detected by the existing sensors on those autonomous vehicles. However, driving safety should be ensured for the weather-induced road conditions for day and night. An investigation into deep learning to recognize the road surface conditions in the day is conducted using the collected data from an embedded camera on the front of the vehicles. Deep learning models have only been proven to be successful in the day, but they have not been assessed for night conditions to date. The objective of this work is to propose deep learning models to detect on-line road surface conditions caused by weather ahead of the autonomous vehicles at night with a high accuracy. For this study, different deep learning models, namely traditional CNN, SqueezeNet, VGG, ResNet, and DenseNet models, are applied with performance comparison. Considering the current limitation of existing night-time detection, reflection features of different road surfaces are investigated in this paper. According to the features, night-time databases are collected with and without ambient illumination. These databases are collected from several public videos in order to make the selected models more applicable to more scenes. In addition, selected models are trained based on a collected database. Finally, in the validation, the accuracy of these models to classify dry, wet, and snowy road surface conditions at night can be up to 94%.
ISSN:2079-9292