Variational Henstock integrability of Banach space valued functions

We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum\nolimits_{n=1}^{\infty} x_n\chi_{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets o...

Full description

Bibliographic Details
Main Authors: Luisa Di Piazza, Valeria Marraffa, Kazimierz Musiał
Format: Article
Language:English
Published: Institute of Mathematics of the Czech Academy of Science 2016-07-01
Series:Mathematica Bohemica
Subjects:
Online Access:http://mb.math.cas.cz/full/141/2/mb141_2_10.pdf
_version_ 1818595575233249280
author Luisa Di Piazza
Valeria Marraffa
Kazimierz Musiał
author_facet Luisa Di Piazza
Valeria Marraffa
Kazimierz Musiał
author_sort Luisa Di Piazza
collection DOAJ
description We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum\nolimits_{n=1}^{\infty} x_n\chi_{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for Bochner and Pettis integrability of $f$. The function $f$ is Bochner integrable if and only if the series $\sum\nolimits_{n=1}^{\infty}x_n|E_n|$ is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of $f$. In this paper we give some conditions for variational Henstock integrability of a certain class of such functions.
first_indexed 2024-12-16T11:18:12Z
format Article
id doaj.art-88efb5f085214ab6bc0c4486ba38c2de
institution Directory Open Access Journal
issn 0862-7959
2464-7136
language English
last_indexed 2024-12-16T11:18:12Z
publishDate 2016-07-01
publisher Institute of Mathematics of the Czech Academy of Science
record_format Article
series Mathematica Bohemica
spelling doaj.art-88efb5f085214ab6bc0c4486ba38c2de2022-12-21T22:33:32ZengInstitute of Mathematics of the Czech Academy of ScienceMathematica Bohemica0862-79592464-71362016-07-01141228729610.21136/MB.2016.19MB.2016.19Variational Henstock integrability of Banach space valued functionsLuisa Di PiazzaValeria MarraffaKazimierz MusiałWe study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum\nolimits_{n=1}^{\infty} x_n\chi_{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets of $[0,1]$, there are well known characterizations for Bochner and Pettis integrability of $f$. The function $f$ is Bochner integrable if and only if the series $\sum\nolimits_{n=1}^{\infty}x_n|E_n|$ is absolutely convergent. Unconditional convergence of the series is equivalent to Pettis integrability of $f$. In this paper we give some conditions for variational Henstock integrability of a certain class of such functions.http://mb.math.cas.cz/full/141/2/mb141_2_10.pdf Kurzweil-Henstock integral variational Henstock integral Pettis integral
spellingShingle Luisa Di Piazza
Valeria Marraffa
Kazimierz Musiał
Variational Henstock integrability of Banach space valued functions
Mathematica Bohemica
Kurzweil-Henstock integral
variational Henstock integral
Pettis integral
title Variational Henstock integrability of Banach space valued functions
title_full Variational Henstock integrability of Banach space valued functions
title_fullStr Variational Henstock integrability of Banach space valued functions
title_full_unstemmed Variational Henstock integrability of Banach space valued functions
title_short Variational Henstock integrability of Banach space valued functions
title_sort variational henstock integrability of banach space valued functions
topic Kurzweil-Henstock integral
variational Henstock integral
Pettis integral
url http://mb.math.cas.cz/full/141/2/mb141_2_10.pdf
work_keys_str_mv AT luisadipiazza variationalhenstockintegrabilityofbanachspacevaluedfunctions
AT valeriamarraffa variationalhenstockintegrabilityofbanachspacevaluedfunctions
AT kazimierzmusiał variationalhenstockintegrabilityofbanachspacevaluedfunctions