Variational Henstock integrability of Banach space valued functions
We study the integrability of Banach space valued strongly measurable functions defined on $[0,1]$. In the case of functions $f$ given by $\sum\nolimits_{n=1}^{\infty} x_n\chi_{E_n}$, where $x_n $ are points of a Banach space and the sets $E_n$ are Lebesgue measurable and pairwise disjoint subsets o...
Main Authors: | Luisa Di Piazza, Valeria Marraffa, Kazimierz Musiał |
---|---|
Format: | Article |
Language: | English |
Published: |
Institute of Mathematics of the Czech Academy of Science
2016-07-01
|
Series: | Mathematica Bohemica |
Subjects: | |
Online Access: | http://mb.math.cas.cz/full/141/2/mb141_2_10.pdf |
Similar Items
-
On a generalization of Henstock-Kurzweil integrals
by: Jan Malý, et al.
Published: (2019-12-01) -
Integration by parts for the L^r Henstock-Kurzweil integral
by: Paul Musial, et al.
Published: (2015-02-01) -
Inclusion Properties of Henstock-Orlicz Spaces
by: Elin Herlinawati
Published: (2022-07-01) -
Linieritas Integral Henstock-Pettis pada Ruang Euclide Rn
by: Hairur Rahman
Published: (2010-05-01) -
Henstock-Kurzweil Integral on [a,b]
by: Siti Nurul Afiyah
Published: (2011-11-01)