Summary: | As at the nanoscale the surface-to-volume ratio may be comparable with any characteristic length, while the material properties may essentially depend on surface/interface energy properties. In order to get effective material properties at the nanoscale, one can use various generalized models of continuum. In particular, within the framework of continuum mechanics, the surface elasticity is applied to the modelling of surface-related phenomena. In this paper, we derive an expression for the effective bending stiffness of a laminate plate, considering the Steigmann–Ogden surface elasticity. To this end, we consider plane bending deformations and utilize the through-the-thickness integration procedure. As a result, the calculated elastic bending stiffness depends on lamina thickness and on bulk and surface elastic moduli. The obtained expression could be useful for the description of the bending of multilayered thin films.
|