The New Improved ZHD and Weighted Mean Temperature Models Based on GNSS and Radiosonde Data Using GPT3 and Fourier Function

Compared to the zenith hydrostatic delay (ZHD) obtained from the Saastamonien model based on in-situ measured meteorological (IMM) data and radiosonde-derived weighted mean temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">...

Full description

Bibliographic Details
Main Authors: Li Li, Ying Gao, Siyi Xu, Houxian Lu, Qimin He, Hang Yu
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/10/1648
_version_ 1827651741504503808
author Li Li
Ying Gao
Siyi Xu
Houxian Lu
Qimin He
Hang Yu
author_facet Li Li
Ying Gao
Siyi Xu
Houxian Lu
Qimin He
Hang Yu
author_sort Li Li
collection DOAJ
description Compared to the zenith hydrostatic delay (ZHD) obtained from the Saastamonien model based on in-situ measured meteorological (IMM) data and radiosonde-derived weighted mean temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>), the ZHD and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> deviations of the GPT3 model have shown obvious periodic trends. This article analyzed the seasonal variations of GPT3-ZHD and GPT3-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> during the 2016–2020 period in the Yangtze River Delta region, and the new improved ZHD and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> models were established by the multi-order Fourier function. The precision of the improved-ZHD model was verified using IMM-ZHD products from 7 GNSS stations during the 2016–2020 period. Furthermore, the precisions of improved <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> and precipitable water vapor (PWV) were verified by radiosonde-derived <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> and PWV in the 2016–2019 period. Compared with the IMM-ZHD and GNSS-PWV products, the mean Bias and RMS of GPT3-ZHD are −0.5 mm and 2.1 mm, while those of GPT3-PWV are 2.7 mm and 11.1 mm. Compared to the radiosonde-derived <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, the mean Bias and RMS of GPT3-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> are −0.8 K and 3.2 K. The mean Bias and RMS of the improved-ZHD model from 2019 to 2020 are −0.1 mm and 0.5 mm, respectively, decreasing by 0.4 mm and 1.6 mm compared to the GPT3-ZHD, while those of the improved-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> are −0.6 K and 2.7 K, respectively, decreasing by 0.2 K and 0.5 K compared to GPT3-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>. The mean Bias and RMS of PWV calculated by GNSS-ZTD, improved-ZHD, and improved-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> are 0.5 mm and 0.6 mm, respectively, compared to the GNSS-PWV, decreasing by 2.2 mm and 10.5 mm compared to the GPT3-PWV. It indicates that the improved ZHD and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> models can be used to obtain the high-precision PWV. It can be applied effectively in the retrieval of high-precision PWV in real-time in the Yangtze River Delta region.
first_indexed 2024-03-09T20:43:50Z
format Article
id doaj.art-89215417d51e44e692019dd92d4bea38
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-09T20:43:50Z
publishDate 2022-10-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-89215417d51e44e692019dd92d4bea382023-11-23T22:51:32ZengMDPI AGAtmosphere2073-44332022-10-011310164810.3390/atmos13101648The New Improved ZHD and Weighted Mean Temperature Models Based on GNSS and Radiosonde Data Using GPT3 and Fourier FunctionLi Li0Ying Gao1Siyi Xu2Houxian Lu3Qimin He4Hang Yu5Research Center of Beidou Navigation and Remote Sensing, Suzhou University of Science and Technology, Suzhou 215009, ChinaSchool of Earth Sciences and Engineering, Hohai University, Nanjing 211100, ChinaResearch Center of Beidou Navigation and Remote Sensing, Suzhou University of Science and Technology, Suzhou 215009, ChinaResearch Center of Beidou Navigation and Remote Sensing, Suzhou University of Science and Technology, Suzhou 215009, ChinaResearch Center of Beidou Navigation and Remote Sensing, Suzhou University of Science and Technology, Suzhou 215009, ChinaResearch Center of Beidou Navigation and Remote Sensing, Suzhou University of Science and Technology, Suzhou 215009, ChinaCompared to the zenith hydrostatic delay (ZHD) obtained from the Saastamonien model based on in-situ measured meteorological (IMM) data and radiosonde-derived weighted mean temperature (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>), the ZHD and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> deviations of the GPT3 model have shown obvious periodic trends. This article analyzed the seasonal variations of GPT3-ZHD and GPT3-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> during the 2016–2020 period in the Yangtze River Delta region, and the new improved ZHD and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> models were established by the multi-order Fourier function. The precision of the improved-ZHD model was verified using IMM-ZHD products from 7 GNSS stations during the 2016–2020 period. Furthermore, the precisions of improved <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> and precipitable water vapor (PWV) were verified by radiosonde-derived <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> and PWV in the 2016–2019 period. Compared with the IMM-ZHD and GNSS-PWV products, the mean Bias and RMS of GPT3-ZHD are −0.5 mm and 2.1 mm, while those of GPT3-PWV are 2.7 mm and 11.1 mm. Compared to the radiosonde-derived <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>, the mean Bias and RMS of GPT3-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> are −0.8 K and 3.2 K. The mean Bias and RMS of the improved-ZHD model from 2019 to 2020 are −0.1 mm and 0.5 mm, respectively, decreasing by 0.4 mm and 1.6 mm compared to the GPT3-ZHD, while those of the improved-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> are −0.6 K and 2.7 K, respectively, decreasing by 0.2 K and 0.5 K compared to GPT3-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula>. The mean Bias and RMS of PWV calculated by GNSS-ZTD, improved-ZHD, and improved-<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> are 0.5 mm and 0.6 mm, respectively, compared to the GNSS-PWV, decreasing by 2.2 mm and 10.5 mm compared to the GPT3-PWV. It indicates that the improved ZHD and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mi>m</mi></msub></mrow></semantics></math></inline-formula> models can be used to obtain the high-precision PWV. It can be applied effectively in the retrieval of high-precision PWV in real-time in the Yangtze River Delta region.https://www.mdpi.com/2073-4433/13/10/1648GPT3Fourier functionzenith hydrostatic delay (ZHD)weighted mean temperature (<i>T<sub>m</sub></i>)precipitable water vapor (PWV)
spellingShingle Li Li
Ying Gao
Siyi Xu
Houxian Lu
Qimin He
Hang Yu
The New Improved ZHD and Weighted Mean Temperature Models Based on GNSS and Radiosonde Data Using GPT3 and Fourier Function
Atmosphere
GPT3
Fourier function
zenith hydrostatic delay (ZHD)
weighted mean temperature (<i>T<sub>m</sub></i>)
precipitable water vapor (PWV)
title The New Improved ZHD and Weighted Mean Temperature Models Based on GNSS and Radiosonde Data Using GPT3 and Fourier Function
title_full The New Improved ZHD and Weighted Mean Temperature Models Based on GNSS and Radiosonde Data Using GPT3 and Fourier Function
title_fullStr The New Improved ZHD and Weighted Mean Temperature Models Based on GNSS and Radiosonde Data Using GPT3 and Fourier Function
title_full_unstemmed The New Improved ZHD and Weighted Mean Temperature Models Based on GNSS and Radiosonde Data Using GPT3 and Fourier Function
title_short The New Improved ZHD and Weighted Mean Temperature Models Based on GNSS and Radiosonde Data Using GPT3 and Fourier Function
title_sort new improved zhd and weighted mean temperature models based on gnss and radiosonde data using gpt3 and fourier function
topic GPT3
Fourier function
zenith hydrostatic delay (ZHD)
weighted mean temperature (<i>T<sub>m</sub></i>)
precipitable water vapor (PWV)
url https://www.mdpi.com/2073-4433/13/10/1648
work_keys_str_mv AT lili thenewimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT yinggao thenewimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT siyixu thenewimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT houxianlu thenewimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT qiminhe thenewimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT hangyu thenewimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT lili newimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT yinggao newimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT siyixu newimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT houxianlu newimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT qiminhe newimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction
AT hangyu newimprovedzhdandweightedmeantemperaturemodelsbasedongnssandradiosondedatausinggpt3andfourierfunction