Exploring the Non-Covalent Bonding in Water Clusters

QTAIM and source function analysis were used to explore the non-covalent bonding in twelve different water clusters (H<sub>2</sub>O)<i><sub>n</sub></i> obtained by considering <i>n</i> = 2–7 and various geometrical arrangements. A total of seventy-seve...

Full description

Bibliographic Details
Main Authors: Luis E. Seijas, Cesar H. Zambrano, Rafael Almeida, Jorge Alí-Torres, Luis Rincón, Fernando Javier Torres
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/6/5271
_version_ 1797611317115224064
author Luis E. Seijas
Cesar H. Zambrano
Rafael Almeida
Jorge Alí-Torres
Luis Rincón
Fernando Javier Torres
author_facet Luis E. Seijas
Cesar H. Zambrano
Rafael Almeida
Jorge Alí-Torres
Luis Rincón
Fernando Javier Torres
author_sort Luis E. Seijas
collection DOAJ
description QTAIM and source function analysis were used to explore the non-covalent bonding in twelve different water clusters (H<sub>2</sub>O)<i><sub>n</sub></i> obtained by considering <i>n</i> = 2–7 and various geometrical arrangements. A total of seventy-seven O−H⋯O hydrogen bonds (HBs) were identified in the systems under consideration, and the examination of the electron density at the bond critical point (BCP) of these HBs revealed the existence of a great diversity of O−H⋯O interactions. Furthermore, the analysis of quantities, such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo><mrow><mi>V</mi><mrow><mo>(</mo><mstyle mathvariant="bold" mathsize="normal"><mi>r</mi></mstyle><mo>)</mo></mrow></mrow><mo>|</mo></mrow><mo>/</mo><mi>G</mi><mrow><mo>(</mo><mstyle mathvariant="bold" mathsize="normal"><mi>r</mi></mstyle><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mrow><mo>(</mo><mstyle mathvariant="bold" mathsize="normal"><mi>r</mi></mstyle><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, allowed a further description of the nature of analogous O−H⋯O interactions within each cluster. In the case of 2-D cyclic clusters, the HBs are nearly equivalent between them. However, significant differences among the O−H⋯O interactions were observed in 3-D clusters. The assessment of the source function (SF) confirmed these findings. Finally, the ability of SF to decompose the electron density (<i>ρ</i>) into atomic contributions allowed the evaluation of the localized or delocalized character of these contributions to <i>ρ</i> at the BCP associated to the different HBs, revealing that weak O−H⋯O interactions have a significant spread of the atomic contributions, whereas strong interactions have more localized atomic contributions. These observations suggest that the nature of the O−H⋯O hydrogen bond in water clusters is determined by the inductive effects originated by the different spatial arrangements of the water molecules in the studied clusters.
first_indexed 2024-03-11T06:27:10Z
format Article
id doaj.art-892419897c6f4b97bba8262ef2f58da1
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-11T06:27:10Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-892419897c6f4b97bba8262ef2f58da12023-11-17T11:31:29ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672023-03-01246527110.3390/ijms24065271Exploring the Non-Covalent Bonding in Water ClustersLuis E. Seijas0Cesar H. Zambrano1Rafael Almeida2Jorge Alí-Torres3Luis Rincón4Fernando Javier Torres5Grupo de Química Computacional y Teórica (QCT-UR), Escuela de Ingeniería Ciencia y Tecnología (EICT), Universidad del Rosario, Bogotá 111221, ColombiaGrupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, EcuadorLaboratorio de Procesos Dinámicos en Química, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, VenezuelaDepartamento de Química, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá 111321, ColombiaGrupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, EcuadorGrupo de Química Computacional y Teórica (QCT-UR), Escuela de Ingeniería Ciencia y Tecnología (EICT), Universidad del Rosario, Bogotá 111221, ColombiaQTAIM and source function analysis were used to explore the non-covalent bonding in twelve different water clusters (H<sub>2</sub>O)<i><sub>n</sub></i> obtained by considering <i>n</i> = 2–7 and various geometrical arrangements. A total of seventy-seven O−H⋯O hydrogen bonds (HBs) were identified in the systems under consideration, and the examination of the electron density at the bond critical point (BCP) of these HBs revealed the existence of a great diversity of O−H⋯O interactions. Furthermore, the analysis of quantities, such as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>|</mo><mrow><mi>V</mi><mrow><mo>(</mo><mstyle mathvariant="bold" mathsize="normal"><mi>r</mi></mstyle><mo>)</mo></mrow></mrow><mo>|</mo></mrow><mo>/</mo><mi>G</mi><mrow><mo>(</mo><mstyle mathvariant="bold" mathsize="normal"><mi>r</mi></mstyle><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mrow><mo>(</mo><mstyle mathvariant="bold" mathsize="normal"><mi>r</mi></mstyle><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, allowed a further description of the nature of analogous O−H⋯O interactions within each cluster. In the case of 2-D cyclic clusters, the HBs are nearly equivalent between them. However, significant differences among the O−H⋯O interactions were observed in 3-D clusters. The assessment of the source function (SF) confirmed these findings. Finally, the ability of SF to decompose the electron density (<i>ρ</i>) into atomic contributions allowed the evaluation of the localized or delocalized character of these contributions to <i>ρ</i> at the BCP associated to the different HBs, revealing that weak O−H⋯O interactions have a significant spread of the atomic contributions, whereas strong interactions have more localized atomic contributions. These observations suggest that the nature of the O−H⋯O hydrogen bond in water clusters is determined by the inductive effects originated by the different spatial arrangements of the water molecules in the studied clusters.https://www.mdpi.com/1422-0067/24/6/5271non-covalent interactionshydrogen bondsQTAIMsource function
spellingShingle Luis E. Seijas
Cesar H. Zambrano
Rafael Almeida
Jorge Alí-Torres
Luis Rincón
Fernando Javier Torres
Exploring the Non-Covalent Bonding in Water Clusters
International Journal of Molecular Sciences
non-covalent interactions
hydrogen bonds
QTAIM
source function
title Exploring the Non-Covalent Bonding in Water Clusters
title_full Exploring the Non-Covalent Bonding in Water Clusters
title_fullStr Exploring the Non-Covalent Bonding in Water Clusters
title_full_unstemmed Exploring the Non-Covalent Bonding in Water Clusters
title_short Exploring the Non-Covalent Bonding in Water Clusters
title_sort exploring the non covalent bonding in water clusters
topic non-covalent interactions
hydrogen bonds
QTAIM
source function
url https://www.mdpi.com/1422-0067/24/6/5271
work_keys_str_mv AT luiseseijas exploringthenoncovalentbondinginwaterclusters
AT cesarhzambrano exploringthenoncovalentbondinginwaterclusters
AT rafaelalmeida exploringthenoncovalentbondinginwaterclusters
AT jorgealitorres exploringthenoncovalentbondinginwaterclusters
AT luisrincon exploringthenoncovalentbondinginwaterclusters
AT fernandojaviertorres exploringthenoncovalentbondinginwaterclusters