Moving Front Solution of the Reaction-Diffusion Problem

In  this  paper,  we study  the  moving  front solution  of the  reaction-diffusion  initialboundary value problem  with a small diffusion coefficient. Problems  in such statements can be used to model physical processes associated  with the propagation of autowave  fronts, in particular, in biophys...

Full description

Bibliographic Details
Main Authors: Evgeny A. Antipov, Vladimir T. Volkov, Natalia T. Levashova, Nikolay N. Nefedov
Format: Article
Language:English
Published: Yaroslavl State University 2017-06-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/517
_version_ 1797878026566893568
author Evgeny A. Antipov
Vladimir T. Volkov
Natalia T. Levashova
Nikolay N. Nefedov
author_facet Evgeny A. Antipov
Vladimir T. Volkov
Natalia T. Levashova
Nikolay N. Nefedov
author_sort Evgeny A. Antipov
collection DOAJ
description In  this  paper,  we study  the  moving  front solution  of the  reaction-diffusion  initialboundary value problem  with a small diffusion coefficient. Problems  in such statements can be used to model physical processes associated  with the propagation of autowave  fronts, in particular, in biophysics or in combustion. The moving front solution is a function  the distinctive feature of which is the presence in the domain  of its definition  of a subdomain where the function  has a large gradient. This subdomain is called an internal  transition layer.  In the nonstationary case, the position of the transition layer varies with  time  which, as it is well known,  complicates  the  numerical  solution  of the  problem  as well as the justification of the correctness  of numerical calculations. In this case the analytical method is an essential component  of the  study.   In the  paper,  asymptotic methods  are applied  for analytical investigation of the  solution  of the  problem  posed.   In particular, an  asymptotic approximation of the  solution  as an expansion  in powers of a small parameter is constructed by the  use of the  Vasil’eva algorithm and  the existence  theorem  is carried  out using the asymptotic method  of differential  inequalities.  The methods used also make it possible to obtain  an equation  describing  the motion  of the front.  For this purpose  a transition to local coordinates  takes  place in the  region of the  front localization.   In the  present paper, in comparison  with earlier publications dealing with two-dimensional problems  with internal  transition layers the  transition to local coordinates  in the  vicinity  of the  front has been modified, that led to the simplification  of the algorithm of determining the equation  of the curve motion.
first_indexed 2024-04-10T02:26:11Z
format Article
id doaj.art-89270ea56533480cbd2a9daa9aaf9a07
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-10T02:26:11Z
publishDate 2017-06-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-89270ea56533480cbd2a9daa9aaf9a072023-03-13T08:07:29ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172017-06-0124325927910.18255/1818-1015-2017-3-259-279367Moving Front Solution of the Reaction-Diffusion ProblemEvgeny A. Antipov0Vladimir T. Volkov1Natalia T. Levashova2Nikolay N. Nefedov3Московский государственный университет имени М.В. ЛомоносоваМосковский государственный университет имени М.В. ЛомоносоваМосковский государственный университет имени М.В. ЛомоносоваМосковский государственный университет имени М.В. ЛомоносоваIn  this  paper,  we study  the  moving  front solution  of the  reaction-diffusion  initialboundary value problem  with a small diffusion coefficient. Problems  in such statements can be used to model physical processes associated  with the propagation of autowave  fronts, in particular, in biophysics or in combustion. The moving front solution is a function  the distinctive feature of which is the presence in the domain  of its definition  of a subdomain where the function  has a large gradient. This subdomain is called an internal  transition layer.  In the nonstationary case, the position of the transition layer varies with  time  which, as it is well known,  complicates  the  numerical  solution  of the  problem  as well as the justification of the correctness  of numerical calculations. In this case the analytical method is an essential component  of the  study.   In the  paper,  asymptotic methods  are applied  for analytical investigation of the  solution  of the  problem  posed.   In particular, an  asymptotic approximation of the  solution  as an expansion  in powers of a small parameter is constructed by the  use of the  Vasil’eva algorithm and  the existence  theorem  is carried  out using the asymptotic method  of differential  inequalities.  The methods used also make it possible to obtain  an equation  describing  the motion  of the front.  For this purpose  a transition to local coordinates  takes  place in the  region of the  front localization.   In the  present paper, in comparison  with earlier publications dealing with two-dimensional problems  with internal  transition layers the  transition to local coordinates  in the  vicinity  of the  front has been modified, that led to the simplification  of the algorithm of determining the equation  of the curve motion.https://www.mais-journal.ru/jour/article/view/517задача реакция-диффузиядвумерный движущийся фронтасимптотическое представлениемалый параметрасимптотический метод дифференциальных неравенств
spellingShingle Evgeny A. Antipov
Vladimir T. Volkov
Natalia T. Levashova
Nikolay N. Nefedov
Moving Front Solution of the Reaction-Diffusion Problem
Моделирование и анализ информационных систем
задача реакция-диффузия
двумерный движущийся фронт
асимптотическое представление
малый параметр
асимптотический метод дифференциальных неравенств
title Moving Front Solution of the Reaction-Diffusion Problem
title_full Moving Front Solution of the Reaction-Diffusion Problem
title_fullStr Moving Front Solution of the Reaction-Diffusion Problem
title_full_unstemmed Moving Front Solution of the Reaction-Diffusion Problem
title_short Moving Front Solution of the Reaction-Diffusion Problem
title_sort moving front solution of the reaction diffusion problem
topic задача реакция-диффузия
двумерный движущийся фронт
асимптотическое представление
малый параметр
асимптотический метод дифференциальных неравенств
url https://www.mais-journal.ru/jour/article/view/517
work_keys_str_mv AT evgenyaantipov movingfrontsolutionofthereactiondiffusionproblem
AT vladimirtvolkov movingfrontsolutionofthereactiondiffusionproblem
AT nataliatlevashova movingfrontsolutionofthereactiondiffusionproblem
AT nikolaynnefedov movingfrontsolutionofthereactiondiffusionproblem