Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source

This paper is devoted to studying the following quasilinear parabolic-elliptic-elliptic chemotaxis system \begin{equation*} \begin{cases} u_{t}=\nabla\cdot(\varphi(u)\nabla u-\psi(u)\nabla v)+au-bu^{\gamma},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0=\Delta v-v+w^{\gamma_{1}}, \ &\ \ x\in \...

Full description

Bibliographic Details
Main Authors: Chang-Jian Wang, Ya-Jie Zhu, Xin-Cai Zhu
Format: Article
Language:English
Published: University of Szeged 2023-04-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10109
_version_ 1797352368104275968
author Chang-Jian Wang
Ya-Jie Zhu
Xin-Cai Zhu
author_facet Chang-Jian Wang
Ya-Jie Zhu
Xin-Cai Zhu
author_sort Chang-Jian Wang
collection DOAJ
description This paper is devoted to studying the following quasilinear parabolic-elliptic-elliptic chemotaxis system \begin{equation*} \begin{cases} u_{t}=\nabla\cdot(\varphi(u)\nabla u-\psi(u)\nabla v)+au-bu^{\gamma},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0=\Delta v-v+w^{\gamma_{1}}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0=\Delta w-w+u^{\gamma_{2}}, \ &\ \ x\in \Omega, \ t>0 , \end{cases} \end{equation*} with homogeneous Neumann boundary conditions in a bounded and smooth domain $\Omega\subset\mathbb{R}^{n}(n\geq 1),$ where $a,b,\gamma_{2}>0, \gamma_{1}\geq 1, \gamma>1 $ and the functions $\varphi,\psi\in C^{2}([0,\infty)$ satisfy $\varphi(s)\geq a_{0}(s+1)^{\alpha}$ and $|\psi(s)|\leq b_{0}s(1+s)^{\beta-1}$ for all $s\geq 0$ with $a_{0},b_{0}>0$ and $\alpha,\beta \in \mathbb{R}.$ It is proved that if $\gamma-\beta\geq \gamma_{1}\gamma_{2} ,$ the classical solution of system would be globally bounded. Furthermore, a specific model for $\gamma_{1}=1,\gamma_{2}=\kappa$ and $\gamma=\kappa+1$ with $\kappa>0$ is considered. If $\beta\leq 1$ and $b>0$ is large enough, there exist $C_{\kappa},\mu_{1},\mu_{2}>0$ such that the solution$(u,v,w)$ satisfies \begin{align*} \left\|u(\cdot,t)-\left(\frac{b}{a}\right)^{\frac{1}{\kappa}}\right\|_{L^{\infty}(\Omega)}+\left\|v(\cdot,t)-\frac{b}{a}\right\|_{L^{\infty}(\Omega)}+\left\|w(\cdot,t)-\frac{b}{a}\right\|_{L^{\infty}(\Omega)} \leq \begin{cases} C_{\kappa}\mbox{e}^{-\mu_{1}t}, \ &\ \ \mbox{if} \ \kappa \in (0,1], \\[2.5mm] C_{\kappa}\mbox{e}^{-\mu_{2}t}, \ &\ \ \mbox{if} \ \kappa \in (1,\infty), \end{cases} \end{align*} for all $t\geq 0.$ The above results generalize some existing results.
first_indexed 2024-03-08T13:15:27Z
format Article
id doaj.art-8928434681064cba84ba730be441bff2
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-03-08T13:15:27Z
publishDate 2023-04-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-8928434681064cba84ba730be441bff22024-01-18T08:28:07ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752023-04-0120231112110.14232/ejqtde.2023.1.1110109Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic sourceChang-Jian Wang0Ya-Jie Zhu1Xin-Cai Zhu2School of Mathematics and Statistics, Xinyang Normal University, Xinyang, P.R. ChinaCollege of Teacher Education, Xinyang Normal University, Xinyang, P.R. ChinaSchool of Mathematics and Statistics, Xinyang Normal University Xinyang, P.R. ChinaThis paper is devoted to studying the following quasilinear parabolic-elliptic-elliptic chemotaxis system \begin{equation*} \begin{cases} u_{t}=\nabla\cdot(\varphi(u)\nabla u-\psi(u)\nabla v)+au-bu^{\gamma},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0=\Delta v-v+w^{\gamma_{1}}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0=\Delta w-w+u^{\gamma_{2}}, \ &\ \ x\in \Omega, \ t>0 , \end{cases} \end{equation*} with homogeneous Neumann boundary conditions in a bounded and smooth domain $\Omega\subset\mathbb{R}^{n}(n\geq 1),$ where $a,b,\gamma_{2}>0, \gamma_{1}\geq 1, \gamma>1 $ and the functions $\varphi,\psi\in C^{2}([0,\infty)$ satisfy $\varphi(s)\geq a_{0}(s+1)^{\alpha}$ and $|\psi(s)|\leq b_{0}s(1+s)^{\beta-1}$ for all $s\geq 0$ with $a_{0},b_{0}>0$ and $\alpha,\beta \in \mathbb{R}.$ It is proved that if $\gamma-\beta\geq \gamma_{1}\gamma_{2} ,$ the classical solution of system would be globally bounded. Furthermore, a specific model for $\gamma_{1}=1,\gamma_{2}=\kappa$ and $\gamma=\kappa+1$ with $\kappa>0$ is considered. If $\beta\leq 1$ and $b>0$ is large enough, there exist $C_{\kappa},\mu_{1},\mu_{2}>0$ such that the solution$(u,v,w)$ satisfies \begin{align*} \left\|u(\cdot,t)-\left(\frac{b}{a}\right)^{\frac{1}{\kappa}}\right\|_{L^{\infty}(\Omega)}+\left\|v(\cdot,t)-\frac{b}{a}\right\|_{L^{\infty}(\Omega)}+\left\|w(\cdot,t)-\frac{b}{a}\right\|_{L^{\infty}(\Omega)} \leq \begin{cases} C_{\kappa}\mbox{e}^{-\mu_{1}t}, \ &\ \ \mbox{if} \ \kappa \in (0,1], \\[2.5mm] C_{\kappa}\mbox{e}^{-\mu_{2}t}, \ &\ \ \mbox{if} \ \kappa \in (1,\infty), \end{cases} \end{align*} for all $t\geq 0.$ The above results generalize some existing results.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10109chemotaxis systemnonlinear indirect secretionglobal boundednesslong time behavior
spellingShingle Chang-Jian Wang
Ya-Jie Zhu
Xin-Cai Zhu
Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source
Electronic Journal of Qualitative Theory of Differential Equations
chemotaxis system
nonlinear indirect secretion
global boundedness
long time behavior
title Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source
title_full Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source
title_fullStr Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source
title_full_unstemmed Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source
title_short Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source
title_sort long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source
topic chemotaxis system
nonlinear indirect secretion
global boundedness
long time behavior
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10109
work_keys_str_mv AT changjianwang longtimebehaviorofthesolutiontoachemotaxissystemwithnonlinearindirectsignalproductionandlogisticsource
AT yajiezhu longtimebehaviorofthesolutiontoachemotaxissystemwithnonlinearindirectsignalproductionandlogisticsource
AT xincaizhu longtimebehaviorofthesolutiontoachemotaxissystemwithnonlinearindirectsignalproductionandlogisticsource