Revisiting the minimum-norm problem

Abstract The design of optimal Magnetic Resonance Imaging (MRI) coils is modeled as a minimum-norm problem (MNP), that is, as an optimization problem of the form min x ∈ R ∥ x ∥ $\min_{x\in\mathcal{R}}\|x\|$ , where R $\mathcal{R}$ is a closed and convex subset of a normed space X. This manuscript i...

Full description

Bibliographic Details
Main Authors: Soledad Moreno-Pulido, Alberto Sánchez-Alzola, Francisco Javier García-Pacheco
Format: Article
Language:English
Published: SpringerOpen 2022-02-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-022-02757-5
_version_ 1818286753649262592
author Soledad Moreno-Pulido
Alberto Sánchez-Alzola
Francisco Javier García-Pacheco
author_facet Soledad Moreno-Pulido
Alberto Sánchez-Alzola
Francisco Javier García-Pacheco
author_sort Soledad Moreno-Pulido
collection DOAJ
description Abstract The design of optimal Magnetic Resonance Imaging (MRI) coils is modeled as a minimum-norm problem (MNP), that is, as an optimization problem of the form min x ∈ R ∥ x ∥ $\min_{x\in\mathcal{R}}\|x\|$ , where R $\mathcal{R}$ is a closed and convex subset of a normed space X. This manuscript is aimed at revisiting MNPs from the perspective of Functional Analysis, Operator Theory, and Banach Space Geometry in order to provide an analytic solution to the following MRI problem: min ψ ∈ R ∥ ψ ∥ 2 $\min_{\psi\in\mathcal{R}}\|\psi\|_{2}$ , where R : = { ψ ∈ R n : ∥ A ψ − b ∥ ∞ ∥ b ∥ ∞ ≤ D } $\mathcal{R}:=\{\psi\in \mathbb{R}^{n}:\frac{\|A\psi-b\|_{\infty}}{\|b\|_{\infty}} \leq D\}$ , with A ∈ M m × n ( R ) $A\in\mathcal{M}_{m\times n}(\mathbb{R})$ , D > 0 $D>0$ , and b ∈ R m ∖ { 0 } $b\in\mathbb{R}^{m}\setminus\{0\}$ .
first_indexed 2024-12-13T01:29:36Z
format Article
id doaj.art-8937f39e3ef04a9da39f605f66418537
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-13T01:29:36Z
publishDate 2022-02-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-8937f39e3ef04a9da39f605f664185372022-12-22T00:04:02ZengSpringerOpenJournal of Inequalities and Applications1029-242X2022-02-012022111110.1186/s13660-022-02757-5Revisiting the minimum-norm problemSoledad Moreno-Pulido0Alberto Sánchez-Alzola1Francisco Javier García-Pacheco2Department of Mathematics, University of CadizDepartment of Statistics, University of CadizDepartment of Mathematics, University of CadizAbstract The design of optimal Magnetic Resonance Imaging (MRI) coils is modeled as a minimum-norm problem (MNP), that is, as an optimization problem of the form min x ∈ R ∥ x ∥ $\min_{x\in\mathcal{R}}\|x\|$ , where R $\mathcal{R}$ is a closed and convex subset of a normed space X. This manuscript is aimed at revisiting MNPs from the perspective of Functional Analysis, Operator Theory, and Banach Space Geometry in order to provide an analytic solution to the following MRI problem: min ψ ∈ R ∥ ψ ∥ 2 $\min_{\psi\in\mathcal{R}}\|\psi\|_{2}$ , where R : = { ψ ∈ R n : ∥ A ψ − b ∥ ∞ ∥ b ∥ ∞ ≤ D } $\mathcal{R}:=\{\psi\in \mathbb{R}^{n}:\frac{\|A\psi-b\|_{\infty}}{\|b\|_{\infty}} \leq D\}$ , with A ∈ M m × n ( R ) $A\in\mathcal{M}_{m\times n}(\mathbb{R})$ , D > 0 $D>0$ , and b ∈ R m ∖ { 0 } $b\in\mathbb{R}^{m}\setminus\{0\}$ .https://doi.org/10.1186/s13660-022-02757-5Minimum normBanach spaceOptimization
spellingShingle Soledad Moreno-Pulido
Alberto Sánchez-Alzola
Francisco Javier García-Pacheco
Revisiting the minimum-norm problem
Journal of Inequalities and Applications
Minimum norm
Banach space
Optimization
title Revisiting the minimum-norm problem
title_full Revisiting the minimum-norm problem
title_fullStr Revisiting the minimum-norm problem
title_full_unstemmed Revisiting the minimum-norm problem
title_short Revisiting the minimum-norm problem
title_sort revisiting the minimum norm problem
topic Minimum norm
Banach space
Optimization
url https://doi.org/10.1186/s13660-022-02757-5
work_keys_str_mv AT soledadmorenopulido revisitingtheminimumnormproblem
AT albertosanchezalzola revisitingtheminimumnormproblem
AT franciscojaviergarciapacheco revisitingtheminimumnormproblem