Multiple solutions for a class of BVPs of fractional discontinuous differential equations with impulses

In this paper, we mainly study the following boundary value problems of fractional discontinuous differential equations with impulses: $ \hskip 3mm \left\{ \begin{array}{lll} _{t}^{C} \mathcal {D}^{\mathfrak{R}}_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t)), \ a.e.\ t\in Q, \\ \tr...

Full description

Bibliographic Details
Main Authors: Yang Wang, Yating Li, Yansheng Liu
Format: Article
Language:English
Published: AIMS Press 2023-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023362?viewType=HTML
_version_ 1797936835578560512
author Yang Wang
Yating Li
Yansheng Liu
author_facet Yang Wang
Yating Li
Yansheng Liu
author_sort Yang Wang
collection DOAJ
description In this paper, we mainly study the following boundary value problems of fractional discontinuous differential equations with impulses: $ \hskip 3mm \left\{ \begin{array}{lll} _{t}^{C} \mathcal {D}^{\mathfrak{R}}_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t)), \ a.e.\ t\in Q, \\ \triangle \Lambda|_{t = t_{{\kappa}}} = \Phi_{{\kappa}}(\Lambda(t_{{\kappa}})), \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ \triangle \Lambda'|_{t = t_{{\kappa}}} = 0, \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ {\vartheta} \Lambda(0)-{\chi} \Lambda(1) = \int_{0}^{1}\varrho_{1}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \\ {\zeta} \Lambda'(0)-\delta \Lambda'(1) = \int_{0}^{1}\varrho_{2}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \end{array}\right. $ where $ {\vartheta} > {\chi} > 0, \ {\zeta} > \delta > 0 $, $ \Phi_{{\kappa}}\in C(\mbox{ $\mathbb{R}$ }^{+}, \mbox{ $\mathbb{R}$ }^{+}) $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \geq 0 $ a.e. on $ Q = [0, 1] $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \in L^{1}(0, 1) $ and $ \digamma:[0, 1]\times \mbox{ $\mathbb{R}$ }^{+}\rightarrow \mbox{ $\mathbb{R}$ }^{+} $, $ \mbox{ $\mathbb{R}$ }^{+} = [0, +\infty) $. By using Krasnosel skii's fixed point theorem for discontinuous operators on cones, some sufficient conditions for the existence of single or multiple positive solutions for the above discontinuous differential system are established. An example is given to confirm the main results in the end.
first_indexed 2024-04-10T18:36:27Z
format Article
id doaj.art-894647d6415147b5bf6d6a1802763312
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-10T18:36:27Z
publishDate 2023-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-894647d6415147b5bf6d6a18027633122023-02-02T01:19:47ZengAIMS PressAIMS Mathematics2473-69882023-01-01837196722410.3934/math.2023362Multiple solutions for a class of BVPs of fractional discontinuous differential equations with impulsesYang Wang0Yating Li1Yansheng Liu21. School of Information Engineering, Shandong Management University, Jinan 250357, Shandong, China2. School of Mathematics and Statistics, Shandong Normal University, Jinan, 250014, Shandong, China2. School of Mathematics and Statistics, Shandong Normal University, Jinan, 250014, Shandong, ChinaIn this paper, we mainly study the following boundary value problems of fractional discontinuous differential equations with impulses: $ \hskip 3mm \left\{ \begin{array}{lll} _{t}^{C} \mathcal {D}^{\mathfrak{R}}_{0^{+}}\Lambda(t) = \mathcal {E}(t)\digamma(t, \Lambda(t)), \ a.e.\ t\in Q, \\ \triangle \Lambda|_{t = t_{{\kappa}}} = \Phi_{{\kappa}}(\Lambda(t_{{\kappa}})), \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ \triangle \Lambda'|_{t = t_{{\kappa}}} = 0, \ {\kappa} = 1, \ 2, \ \cdots, \ m, \\ {\vartheta} \Lambda(0)-{\chi} \Lambda(1) = \int_{0}^{1}\varrho_{1}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \\ {\zeta} \Lambda'(0)-\delta \Lambda'(1) = \int_{0}^{1}\varrho_{2}({\upsilon})\Lambda({\upsilon})d{\upsilon}, \end{array}\right. $ where $ {\vartheta} > {\chi} > 0, \ {\zeta} > \delta > 0 $, $ \Phi_{{\kappa}}\in C(\mbox{ $\mathbb{R}$ }^{+}, \mbox{ $\mathbb{R}$ }^{+}) $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \geq 0 $ a.e. on $ Q = [0, 1] $, $ \mathcal {E}, \ \varrho_{1}, \ \varrho_{2} \in L^{1}(0, 1) $ and $ \digamma:[0, 1]\times \mbox{ $\mathbb{R}$ }^{+}\rightarrow \mbox{ $\mathbb{R}$ }^{+} $, $ \mbox{ $\mathbb{R}$ }^{+} = [0, +\infty) $. By using Krasnosel skii's fixed point theorem for discontinuous operators on cones, some sufficient conditions for the existence of single or multiple positive solutions for the above discontinuous differential system are established. An example is given to confirm the main results in the end.https://www.aimspress.com/article/doi/10.3934/math.2023362?viewType=HTMLboundary value problemsdiscontinuous differential equationsfixed point theoryfractional differential equationmultiple solutions
spellingShingle Yang Wang
Yating Li
Yansheng Liu
Multiple solutions for a class of BVPs of fractional discontinuous differential equations with impulses
AIMS Mathematics
boundary value problems
discontinuous differential equations
fixed point theory
fractional differential equation
multiple solutions
title Multiple solutions for a class of BVPs of fractional discontinuous differential equations with impulses
title_full Multiple solutions for a class of BVPs of fractional discontinuous differential equations with impulses
title_fullStr Multiple solutions for a class of BVPs of fractional discontinuous differential equations with impulses
title_full_unstemmed Multiple solutions for a class of BVPs of fractional discontinuous differential equations with impulses
title_short Multiple solutions for a class of BVPs of fractional discontinuous differential equations with impulses
title_sort multiple solutions for a class of bvps of fractional discontinuous differential equations with impulses
topic boundary value problems
discontinuous differential equations
fixed point theory
fractional differential equation
multiple solutions
url https://www.aimspress.com/article/doi/10.3934/math.2023362?viewType=HTML
work_keys_str_mv AT yangwang multiplesolutionsforaclassofbvpsoffractionaldiscontinuousdifferentialequationswithimpulses
AT yatingli multiplesolutionsforaclassofbvpsoffractionaldiscontinuousdifferentialequationswithimpulses
AT yanshengliu multiplesolutionsforaclassofbvpsoffractionaldiscontinuousdifferentialequationswithimpulses