Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds

Abstract Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with othe...

Full description

Bibliographic Details
Main Authors: Chenlu Wang, Xuegang Li, Huikai Xu, Zhiyuan Li, Junhua Wang, Zhen Yang, Zhenyu Mi, Xuehui Liang, Tang Su, Chuhong Yang, Guangyue Wang, Wenyan Wang, Yongchao Li, Mo Chen, Chengyao Li, Kehuan Linghu, Jiaxiu Han, Yingshan Zhang, Yulong Feng, Yu Song, Teng Ma, Jingning Zhang, Ruixia Wang, Peng Zhao, Weiyang Liu, Guangming Xue, Yirong Jin, Haifeng Yu
Format: Article
Language:English
Published: Nature Portfolio 2022-01-01
Series:npj Quantum Information
Online Access:https://doi.org/10.1038/s41534-021-00510-2
_version_ 1818753790883397632
author Chenlu Wang
Xuegang Li
Huikai Xu
Zhiyuan Li
Junhua Wang
Zhen Yang
Zhenyu Mi
Xuehui Liang
Tang Su
Chuhong Yang
Guangyue Wang
Wenyan Wang
Yongchao Li
Mo Chen
Chengyao Li
Kehuan Linghu
Jiaxiu Han
Yingshan Zhang
Yulong Feng
Yu Song
Teng Ma
Jingning Zhang
Ruixia Wang
Peng Zhao
Weiyang Liu
Guangming Xue
Yirong Jin
Haifeng Yu
author_facet Chenlu Wang
Xuegang Li
Huikai Xu
Zhiyuan Li
Junhua Wang
Zhen Yang
Zhenyu Mi
Xuehui Liang
Tang Su
Chuhong Yang
Guangyue Wang
Wenyan Wang
Yongchao Li
Mo Chen
Chengyao Li
Kehuan Linghu
Jiaxiu Han
Yingshan Zhang
Yulong Feng
Yu Song
Teng Ma
Jingning Zhang
Ruixia Wang
Peng Zhao
Weiyang Liu
Guangming Xue
Yirong Jin
Haifeng Yu
author_sort Chenlu Wang
collection DOAJ
description Abstract Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers.
first_indexed 2024-12-18T05:12:58Z
format Article
id doaj.art-89481ca49254402ca66add6748aff06d
institution Directory Open Access Journal
issn 2056-6387
language English
last_indexed 2024-12-18T05:12:58Z
publishDate 2022-01-01
publisher Nature Portfolio
record_format Article
series npj Quantum Information
spelling doaj.art-89481ca49254402ca66add6748aff06d2022-12-21T21:19:50ZengNature Portfolionpj Quantum Information2056-63872022-01-01811610.1038/s41534-021-00510-2Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 millisecondsChenlu Wang0Xuegang Li1Huikai Xu2Zhiyuan Li3Junhua Wang4Zhen Yang5Zhenyu Mi6Xuehui Liang7Tang Su8Chuhong Yang9Guangyue Wang10Wenyan Wang11Yongchao Li12Mo Chen13Chengyao Li14Kehuan Linghu15Jiaxiu Han16Yingshan Zhang17Yulong Feng18Yu Song19Teng Ma20Jingning Zhang21Ruixia Wang22Peng Zhao23Weiyang Liu24Guangming Xue25Yirong Jin26Haifeng Yu27Beijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesBeijing Academy of Quantum Information SciencesAbstract Here we report a breakthrough in the fabrication of a long lifetime transmon qubit. We use tantalum films as the base superconductor. By using a dry etching process, we obtained transmon qubits with a best T 1 lifetime of 503 μs. As a comparison, we also fabricated transmon qubits with other popular materials, including niobium and aluminum, under the same design and fabrication processes. After characterizing their coherence properties, we found that qubits prepared with tantalum films have the best performance. Since the dry etching process is stable and highly anisotropic, it is much more suitable for fabricating complex scalable quantum circuits, when compared to wet etching. As a result, the current breakthrough indicates that the dry etching process of tantalum film is a promising approach to fabricate medium- or large-scale superconducting quantum circuits with a much longer lifetime, meeting the requirements for building practical quantum computers.https://doi.org/10.1038/s41534-021-00510-2
spellingShingle Chenlu Wang
Xuegang Li
Huikai Xu
Zhiyuan Li
Junhua Wang
Zhen Yang
Zhenyu Mi
Xuehui Liang
Tang Su
Chuhong Yang
Guangyue Wang
Wenyan Wang
Yongchao Li
Mo Chen
Chengyao Li
Kehuan Linghu
Jiaxiu Han
Yingshan Zhang
Yulong Feng
Yu Song
Teng Ma
Jingning Zhang
Ruixia Wang
Peng Zhao
Weiyang Liu
Guangming Xue
Yirong Jin
Haifeng Yu
Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
npj Quantum Information
title Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
title_full Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
title_fullStr Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
title_full_unstemmed Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
title_short Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds
title_sort towards practical quantum computers transmon qubit with a lifetime approaching 0 5 milliseconds
url https://doi.org/10.1038/s41534-021-00510-2
work_keys_str_mv AT chenluwang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT xuegangli towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT huikaixu towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT zhiyuanli towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT junhuawang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT zhenyang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT zhenyumi towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT xuehuiliang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT tangsu towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT chuhongyang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT guangyuewang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT wenyanwang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT yongchaoli towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT mochen towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT chengyaoli towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT kehuanlinghu towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT jiaxiuhan towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT yingshanzhang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT yulongfeng towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT yusong towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT tengma towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT jingningzhang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT ruixiawang towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT pengzhao towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT weiyangliu towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT guangmingxue towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT yirongjin towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds
AT haifengyu towardspracticalquantumcomputerstransmonqubitwithalifetimeapproaching05milliseconds