Influence of grid distribution on CFD model of compressible flow inside the primary nozzle and mixing chamber used in refrigeration application

In this study, the influence of grid distribution on CFD model of the primary nozzle and mixing chamber used in refrigeration application was primarily investigated. The only one geometry of primary nozzle and mixing chamber was modeled. The two different grid distributions, fine near-wall grid and...

Full description

Bibliographic Details
Main Authors: Ruangtrakoon Natthawut, Bumrungthaichaichan Eakarach
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2018/51/matecconf_iceast2018_02045.pdf
Description
Summary:In this study, the influence of grid distribution on CFD model of the primary nozzle and mixing chamber used in refrigeration application was primarily investigated. The only one geometry of primary nozzle and mixing chamber was modeled. The two different grid distributions, fine near-wall grid and regular grid with the identical total grid number, were simulated to investigate the flow phenomena inside the considered system. The appropriate boundary conditions and numerical methods were carefully employed. The simulated entrainment ratios obtained by two different grid arrangements were validated by comparing with the reliable experimental data. The results revealed that the Mach number distributions of these models were different. Further, the outlet total pressure predicted by fine near-wall grid was about 1.3% higher than that obtained by regular grid.
ISSN:2261-236X