Microwave Irradiation to Produce High Performance Thermoelectric Material Based on Al Doped ZnO Nanostructures

Microwave irradiation is found to be effective to provide highly crystalline nanostructured materials. In this work, this technique has been used to produce highly improved thermoelectric (TE) material based on aluminum (Al) doped zinc oxide (ZnO) nanostructures (NSs). The effect of Al dopant at the...

Full description

Bibliographic Details
Main Authors: Neazar Baghdadi, Numan Salah, Ahmed Alshahrie, Kunihito Koumoto
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/10/7/610
Description
Summary:Microwave irradiation is found to be effective to provide highly crystalline nanostructured materials. In this work, this technique has been used to produce highly improved thermoelectric (TE) material based on aluminum (Al) doped zinc oxide (ZnO) nanostructures (NSs). The effect of Al dopant at the concentration range 0.5–3 mol % on the structural and TE properties has been investigated in more details. The optimum concentration of Al for better TE performance is found to be 2 mol %, which could significantly increase the electrical conductivity and reduce the thermal conductivity of ZnO NSs and thus enhance the TE performance. This concentration showed almost metallic conductivity behavior for ZnO NSs at low temperatures, e.g., below 500 K. The electrical conductivity reached 400 S/m at room temperature, which is around 200 times greater than the value recorded for the pure ZnO NSs. Remarkably, the measured room temperature thermal conductivity of the microwave synthesized ZnO NSs was very low, which is around 4 W/m·K. This value was further reduced to 0.5 W/m·K by increasing the Al doping to 3 mol %. The figure of merit recorded 0.028 at 675 K, which is 15 times higher than that of the pure ZnO NSs. The output power of a single leg module made of 2 mol % Al doped ZnO NSs was 3.7 µW at 485 K, which is higher by 8 times than that of the pure sample. These results demonstrated the advantage of the microwave irradiation rout as a superior synthetic technique for producing and doping promising TE nanomaterials like ZnO NSs.
ISSN:2073-4352