Un Modelo Matemático SIR-D Segmentado para la Dinámica de Propagación del Coronavirus (COVID-19) en el Perú

The present study proposes the use of a segmented SIR-D mathematical model to predict the evolution of epidemiological populations of interest in the COVID-19 pandemic (Susceptible [S], Infected [I], Recovered [R] and dead [D]), information that is often key to guiding decision-making in the fight a...

Full description

Bibliographic Details
Main Authors: Neisser Pino Romero, Percy Soto-Becerra, Ricardo Angelo Quispe Mendizábal
Format: Article
Language:Spanish
Published: Universidad Nacional de Trujillo 2020-07-01
Series:Selecciones Matemáticas
Subjects:
Online Access:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2970
_version_ 1818573525424799744
author Neisser Pino Romero
Percy Soto-Becerra
Ricardo Angelo Quispe Mendizábal
author_facet Neisser Pino Romero
Percy Soto-Becerra
Ricardo Angelo Quispe Mendizábal
author_sort Neisser Pino Romero
collection DOAJ
description The present study proposes the use of a segmented SIR-D mathematical model to predict the evolution of epidemiological populations of interest in the COVID-19 pandemic (Susceptible [S], Infected [I], Recovered [R] and dead [D]), information that is often key to guiding decision-making in the fight against epidemics. In order to obtain a better model calibration and a lower prediction error in the short term, we performed the model segmentation in 6 stages of periods of 14 days each. At each stage, the epidemiological that define the system of equations are empirically estimated by linear regression of the epidemiological surveillance data that the Peruvian Ministry of Health collects and reports daily. This strategy showed better model calibration compared to an unsegmented SIR-D model.
first_indexed 2024-12-15T00:12:30Z
format Article
id doaj.art-89635fbf2d0f46fcafc052b52a643c79
institution Directory Open Access Journal
issn 2411-1783
2411-1783
language Spanish
last_indexed 2024-12-15T00:12:30Z
publishDate 2020-07-01
publisher Universidad Nacional de Trujillo
record_format Article
series Selecciones Matemáticas
spelling doaj.art-89635fbf2d0f46fcafc052b52a643c792022-12-21T22:42:32ZspaUniversidad Nacional de TrujilloSelecciones Matemáticas2411-17832411-17832020-07-0170116217110.17268/sel.mat.2020.01.15Un Modelo Matemático SIR-D Segmentado para la Dinámica de Propagación del Coronavirus (COVID-19) en el PerúNeisser Pino Romero0https://orcid.org/0000-0002-9865-5974Percy Soto-Becerra1https://orcid.org/0000-0001-5332-9254Ricardo Angelo Quispe Mendizábal2https://orcid.org/0000-0001-6328-3093Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, PerúInstituto de Evaluación de Tecnologías en Salud e Investigación - IETSI, EsSalud. Lima, PerúFacultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos. Lima, PerúThe present study proposes the use of a segmented SIR-D mathematical model to predict the evolution of epidemiological populations of interest in the COVID-19 pandemic (Susceptible [S], Infected [I], Recovered [R] and dead [D]), information that is often key to guiding decision-making in the fight against epidemics. In order to obtain a better model calibration and a lower prediction error in the short term, we performed the model segmentation in 6 stages of periods of 14 days each. At each stage, the epidemiological that define the system of equations are empirically estimated by linear regression of the epidemiological surveillance data that the Peruvian Ministry of Health collects and reports daily. This strategy showed better model calibration compared to an unsegmented SIR-D model.https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2970coronavirus (covid-19)epidemiologyordinary differential equationscomputational simulationregression methods
spellingShingle Neisser Pino Romero
Percy Soto-Becerra
Ricardo Angelo Quispe Mendizábal
Un Modelo Matemático SIR-D Segmentado para la Dinámica de Propagación del Coronavirus (COVID-19) en el Perú
Selecciones Matemáticas
coronavirus (covid-19)
epidemiology
ordinary differential equations
computational simulation
regression methods
title Un Modelo Matemático SIR-D Segmentado para la Dinámica de Propagación del Coronavirus (COVID-19) en el Perú
title_full Un Modelo Matemático SIR-D Segmentado para la Dinámica de Propagación del Coronavirus (COVID-19) en el Perú
title_fullStr Un Modelo Matemático SIR-D Segmentado para la Dinámica de Propagación del Coronavirus (COVID-19) en el Perú
title_full_unstemmed Un Modelo Matemático SIR-D Segmentado para la Dinámica de Propagación del Coronavirus (COVID-19) en el Perú
title_short Un Modelo Matemático SIR-D Segmentado para la Dinámica de Propagación del Coronavirus (COVID-19) en el Perú
title_sort un modelo matematico sir d segmentado para la dinamica de propagacion del coronavirus covid 19 en el peru
topic coronavirus (covid-19)
epidemiology
ordinary differential equations
computational simulation
regression methods
url https://revistas.unitru.edu.pe/index.php/SSMM/article/view/2970
work_keys_str_mv AT neisserpinoromero unmodelomatematicosirdsegmentadoparaladinamicadepropagaciondelcoronaviruscovid19enelperu
AT percysotobecerra unmodelomatematicosirdsegmentadoparaladinamicadepropagaciondelcoronaviruscovid19enelperu
AT ricardoangeloquispemendizabal unmodelomatematicosirdsegmentadoparaladinamicadepropagaciondelcoronaviruscovid19enelperu