Topography and Soil Organic Carbon in Subtropical Forests of China

Soil organic carbon (SOC) strongly contributes to the operation of the global carbon cycling, and topographical factors largely influence its spatial distribution. However, SOC distribution and its leading topographical impact factors in subtropical forest ecosystems (e.g., the Zhejiang Province in...

Full description

Bibliographic Details
Main Authors: Tao Zhou, Yulong Lv, Binglou Xie, Lin Xu, Yufeng Zhou, Tingting Mei, Yongfu Li, Ning Yuan, Yongjun Shi
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/14/5/1023
Description
Summary:Soil organic carbon (SOC) strongly contributes to the operation of the global carbon cycling, and topographical factors largely influence its spatial distribution. However, SOC distribution and its leading topographical impact factors in subtropical forest ecosystems (e.g., the Zhejiang Province in China) have received relatively limited attention from researchers. In this study, 255 forest soil samples were collected from the Zhejiang Province to quantify the spatial variation in SOC and impact factors in subtropical forests. The SOC contents over soil profiles were 35.95 ± 22.58 g/kg, 20.98 ± 15.26 g/kg, and 13.77 ± 11.28 g/kg at depths of 0–10 cm, 10–30 cm, and 30–60 cm, respectively. The coefficient variations at different depths were 62.81% (0–10 cm), 72.74% (10–30 cm), and 81.92% (30–60 cm), respectively. SOC content shows a moderate intensity variation in the Zhejiang Province. The nugget coefficients of the SOC content for the three depths were 0.809 (0–10 cm), 0.846 (10–30 cm), and 0.977 (30–60 cm), respectively. Structural factors mainly influence SOC content. SOC content is positively correlated with elevation and slope, and negatively correlated with slope position (<i>p</i> < 0.05). However, the SOC content was negatively correlated with slope in mixed coniferous and broad-leaved forest. The distribution of the SOC content was relatively balanced between different slope positions. However, the differences became obvious when forest types were distinguished. Topographical factors affected the SOC content differently: elevation > slope > slope position. Slope becomes the main influencing factor in 30–60 cm soil. Forest type significantly influenced the SOC content but with a low statistical explanation compared to topographical factors. Topography has different effects on SOC of different forest types in subtropical forests. This reminds us that in future research, we should consider the combination of topography and forest types.
ISSN:1999-4907