Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties

Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles...

Full description

Bibliographic Details
Main Authors: Pavitra Nandagopal, Anthony Nyangson Steven, Liong-Wai Chan, Zaidah Rahmat, Haryati Jamaluddin, Nur Izzati Mohd Noh
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Biology
Subjects:
Online Access:https://www.mdpi.com/2079-7737/10/10/1061
Description
Summary:Cyanobacteria are the most abundant oxygenic photosynthetic organisms inhabiting various ecosystems on earth. As with all other photosynthetic organisms, cyanobacteria release oxygen as a byproduct during photosynthesis. In fact, some cyanobacterial species are involved in the global nitrogen cycles by fixing atmospheric nitrogen. Environmental factors influence the dynamic, physiological characteristics, and metabolic profiles of cyanobacteria, which results in their great adaptation ability to survive in diverse ecosystems. The evolution of these primitive bacteria resulted from the unique settings of photosynthetic machineries and the production of bioactive compounds. Specifically, bioactive compounds play roles as regulators to provide protection against extrinsic factors and act as intracellular signaling molecules to promote colonization. In addition to the roles of bioactive metabolites as indole alkaloids, terpenoids, mycosporine-like amino acids, non-ribosomal peptides, polyketides, ribosomal peptides, phenolic acid, flavonoids, vitamins, and antimetabolites for cyanobacterial survival in numerous habitats, which is the focus of this review, the bioactivities of these compounds for the treatment of various diseases are also discussed.
ISSN:2079-7737