Temperature-triggered enzyme immobilization and release based on cross-linked gelatin nanoparticles.

A glucoamylase-immobilized system based on cross-linked gelatin nanoparticles (CLGNs) was prepared by coacervation method. This system exhibited characteristics of temperature-triggered phase transition, which could be used for enzyme immobilization and release. Their morphology and size distributio...

Full description

Bibliographic Details
Main Authors: Zhenhai Gan, Ting Zhang, Yongchun Liu, Daocheng Wu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3468439?pdf=render
Description
Summary:A glucoamylase-immobilized system based on cross-linked gelatin nanoparticles (CLGNs) was prepared by coacervation method. This system exhibited characteristics of temperature-triggered phase transition, which could be used for enzyme immobilization and release. Their morphology and size distribution were examined by transmission electron microscopy and dynamic light scattering particle size analyzer. Their temperature-triggered glucoamylase immobilization and release features were also further investigated under different temperatures. Results showed that the CLGNs were regularly spherical with diameters of 155±5 nm. The loading efficiencies of glucoamylase immobilized by entrapment and adsorption methods were 59.9% and 24.7%, respectively. The immobilized enzyme was released when the system temperature was above 40°C and performed high activity similar to free enzyme due to the optimum temperature range for glucoamylase. On the other hand, there was no enzyme release that could be found when the system temperature was below 40°C. The efficiency of temperature-triggered release was as high as 99.3% for adsorption method, while the release of enzyme from the entrapment method was not detected. These results indicate that CLGNs are promising matrix for temperature-triggered glucoamylase immobilization and release by adsorption immobilization method.
ISSN:1932-6203